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Abstract

The Video Object Segmentation (VOS) task on the EPIC-
Kitchen VISOR dataset requires continuous segmentation
of the M annotated objects in the first frame of video subse-
quences across subsequent frames, allowing for occlusion,
disappearance, and reappearance of objects while exclud-
ing those not present in the initial frame. Evaluation follows
the DAVIS standard protocol, using the Jaccard Index (J)
and Boundary F-Measure (F) to assess generalization ca-
pabilities in unseen kitchen scenarios. Our team employed
the SAM?2 model and achieved a J&F-Mean score of 87.5%
on the test set through a series of fine-tuning steps on the
EPIC-Kitchen VISOR dataset, demonstrating the effective-
ness and superiority of our approach.

1. Introduction

1.1. Datasets

EPIC-KITCHENS VISOR is a large-scale dataset built
upon EPIC-KITCHENS-100, providing 272,000 manual
semantic masks across 50,700 images of 36 hours, 9.9 mil-
lion interpolated dense masks, and 67,000 hand-object rela-
tion annotations, covering 257 object classes and 36 hours
of videos. The dataset employs an Al-assisted annotation
pipeline to ensure quality, supporting modeling of long-
term object transformations and generalization evaluation
in unseen scenarios. Baseline models demonstrate perfor-
mance variations on the validation set. Released under the
CC BY-NC 4.0 license, EPIC-KITCHENS VISOR serves
as a critical research resource for fields such as video un-
derstanding and embodied intelligence.

The VOS task on this dataset mainly has the following
two difficulties:

» Ensuring short-term and long-term consistency of pixel-
level annotations when objects undergo transformative
interactions. For example, when an onion is peeled,
chopped, and cooked, we need to obtain accurate pixel-

level annotations of onion skins, onion pieces, chopping
boards, knives, pans, and acting hands.

* Any of the M objects may be occluded or invisible and
reappear in subsequences.

1.2. Related Works

In recent years, the field of semi-supervised video ob-
ject segmentation (VOS) has seen profound explorations
centered on spatio-temporal information modeling and ob-
ject semantic association, with a series of innovative ap-
proaches emerging continuously. Spatio-temporal memory
networks and their improved paradigms (such as STM[5]
and STCNJ1]) store historical frame features by construct-
ing external memory and achieve long-term dependency
modeling through dynamic update mechanisms, effectively
addressing object occlusion and appearance changes. Par-
allel co-attention networks and edge attention gated graph
convolutional networks based on attention mechanisms
strengthen target boundary and region consistency reason-
ing by mining inter-frame feature interactions and super-
pixel spatio-temporal correlations. Feature association-
oriented frameworks like STMA[3] and AOT[7] Trans-
former models achieve precise cross-frame matching and
efficient decoding of multiple objects through multi-level
feature interaction and unified embedding spaces. The Re-
current Dynamic Embedding (RDE[4]) model significantly
reduces error accumulation in long-video segmentation and
improves robustness to mask quality through adaptive mem-
ory bank updates and self-correction strategies.

Recently, the Cutie model[2] has stood out with its in-
novative object-level memory reading mechanism. This
mechanism introduces object queries and an object trans-
former to achieve top-down semantic guidance and bottom-
up pixel feature interaction. The foreground-background
masked attention divides object queries into foreground and
background groups, forcibly separating semantic informa-
tion to effectively avoid cross-region interference. How-
ever, in scenarios with numerous objects and severe mu-
tual occlusion, Cutie may suffer from inaccurate target fea-
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Figure 1. The SAM2 architecture. For a given frame, the segmentation prediction is conditioned on the current prompt and/or on previously
observed memories. Videos are processed in a streaming fashion with frames being consumed one at a time by the image encoder, and
cross-attended to memories of the target object from previous frames. The mask decoder, which optionally also takes input prompts,
predicts the segmentation mask for that frame. Finally, a memory encoder transforms the prediction and image encoder embeddings (not

shown in the figure) for use in future frames.

ture extraction due to excessive interference of semantic
information between objects. Additionally, when objects
move extremely fast and exhibit abrupt appearance changes
between adjacent frames, its feature matching mechanism
based on object queries may fail to keep up with such rapid
changes, leading to temporary target tracking loss or seg-
mentation mask drift.

Meanwhile, SAM2 (Segment Anything Model 2)[6] ex-
pands segmentation capabilities from images to videos
through a streaming memory architecture and ultra-large-
scale datasets. Based on a Transformer structure, it dynam-
ically fuses historical frame features via a memory attention
module, supporting interactive segmentation for both sin-
gle images and long videos. It has achieved state-of-the-art
(SOTA) performance on multiple datasets. Therefore, our
team leverages SAM2 to address the semi-supervised VOS
task on the EPIC-Kitchen VISOR dataset.

2. Method

SAM2 (Segment Anything Model 2) is the first founda-
tion model supporting unified segmentation for images and
videos, addressing the challenges of interactive visual seg-
mentation in spatio-temporal dimensions through a stream-
ing memory architecture and large-scale dataset-driven ap-
proach. Built upon the Transformer structure, the model
comprises core modules including an MAE-pretrained Hi-
era image encoder, a memory attention module that stores
historical frame features and interaction information, and a
mask decoder that inherits SAM’s prompt processing logic
while adding an occlusion prediction head. These compo-
nents enable multi-scale feature decoding, cross-frame se-
mantic alignment, and mask detail optimization. The over-
all architecture of SAM2 is shown in Figure 1.

In terms of memory mechanisms, SAM2 employs a se-

quential processing strategy, managing memories of up to N
unprompted frames and M prompted frames through a FIFO
queue. Combined with a dynamic memory update mech-
anism, this approach avoids explicit storage of all histori-
cal frames, reducing memory usage. The model can gener-
ate full-video mask sequences from a single-frame prompt
(e.g., a click on the first frame) and requires only one-third
of the interactions (compared to traditional methods) for in-
teractive refinement.

Experimental results demonstrate that SAM2 achieves
an average J&F metric of 79.3 across 17 video segmentation
benchmarks, improves image segmentation accuracy by 1.4
mloU with a 6x speedup compared to SAM, and exhibits
cross-scenario robustness in geographic diversity tests, with
performance discrepancies among gender and age groups
of less than 3%. This establishes a new paradigm for video
segmentation that balances efficiency and generalization ca-
pability.

3. Experiments

Our team first converted the EPIC-kitchen VISOR dataset
into the standard DAVIS format, where each long video
sequence was split into multiple sub-video sequences con-
taining no more than 6 frames. We first performed zero-
shot inference, and then conducted a series of fine-tuning
on SAM?2 using the training set and the combined training-
validation set. Finally, it achieved a performance of 87.5%
on the test set.

3.1. Zero-Shot Inference

Our team first conducted zero-shot inference on the val-
idation set of the EPIC-Kitchen VISOR dataset using
pretrained SAM?2’s four scale configurations (tiny, small,
base_plus, and large). The inference results are shown in



the Table 1. The experimental results demonstrate that
SAM?2 exhibits good performance without any prior expo-
sure to this dataset. The J&F-Mean scores of all four SAM2
scales on the validation set exceeded 75%.Among them,
SAM2_large achieved the best performance, with a J&F-
Mean score of 77%.

Model Score
SAM2_t  0.750578
SAM2.s  0.760589

SAM2. b+ 0.766896
SAM21 0.770411

Table 1. The results of zero-shot inference with SAM2 on the
EPIC-Kitchen VISOR dataset.

3.2. Finetuning SAM2 on EPIC-Kitechen VISOR

Our team conducted all training on two 24G 4090 GPUs.
First, we fine-tuned SAM?2 on the training set. During train-
ing, the length of each video sequence was set to 3, the num-
ber of objects tracked per frame was set to 3, and the batch
size was 2. We first set the base learning rate to 5x 106 and
the vision learning rate to 3 x 1075, training for 80 epochs.
On the validation set, the J&F-Mean reached 87.5%. Next,
based on this, we adjusted the base learning rate to 1 x 10~°
and the vision learning rate to 1 x 1079, training for an ad-
ditional 20 epochs. The J&F-Mean on the validation set
reached 87.6%, and on the test set, it reached 87.1%.

Subsequently, we merged the training set and validation
set. On the basis of the above training, we adjusted the fu-
sion strategy in the FPN neck to bicubic interpolation, set
the base learning rate to 5 x 1075 and the vision learning
rate to 3 x 1078, and trained for 40 epochs. Finally, the
J&F-Mean on the test set reached 87.5%.

4. Conclusion
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