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Abstract

Epic-Kitchen EPIC-SOUNDS Audio-Based Interaction
Recognition Challenge 2025 involves learning the mapping
from audio samples to their corresponding action labels. On
the CodaLab leaderboard, our team "koi” secured a Top-1
accuracy of 57.51%, placing first. In this report, we will go
into the technical specifics of how we tackled this task.Our
solution leverages refined tuning of AudiolnceptionNeXt [ 1]
and cross-architecture fusion with UniRepLKNet [2]. A
dynamic weight allocation strategy is introduced to inte-
grate feature representations from different architectures,
enhancing classification accuracy while maintaining com-
putational efficiency. Experimental results demonstrate that
the proposed approach achieves a Top-1 accuracy of 57.51
% on the EPIC-SOUNDS dataset in the challenge.

1. Introduction

EPIC-SOUNDS Audio-Based Interaction Recognition is
one of the core events in the EPIC-KITCHENS 2025 Chal-
lenge, aiming to identify interaction behavior categories
in videos through audio signals. Relying on the EPIC-
SOUNDS dataset, the competition requires participants
to assign 44 pre-defined interaction category labels (e.g.,
“open bag”, “chop vegetables”) to trimmed audio clips.
Derived from the audio component of EPIC-KITCHENS-
100, the dataset focuses on unscripted daily activities in
kitchen scenarios, covering sounds generated by object in-
teractions (e.g., metal collisions, water flow) and wearer
actions (e.g., footsteps, tableware operations). Unlike tra-
ditional datasets, EPIC-SOUNDS addresses the issues of
temporal misalignment between visual and audio events and
cross-modal single-label annotation in EPIC-KITCHENS-
100, while introducing challenges such as variable audio
lengths, background noise interference, and diversity of ho-
mogenous sounds (e.g., subtle acoustic differences when
chopping different vegetables or acoustic feature variations
of the same action in different environments).

In terms of methodologies, previous research on audio
interaction recognition has primarily adopted two technical

pathways: One is based on Convolutional Neural Network
(CNN) architectures, which leverage their local feature ex-
traction capabilities to process the time-frequency domain
representations of audio. For example, the Slow-Fast [3]
two-stream model captures global frequency semantics and
long-term activities (e.g., continuous stirring) through a
”slow stream” with low temporal resolution, while a high-
resolution “fast stream” analyzes short-term transient fea-
tures and local details (e.g., the moment a knife cuts into in-
gredients), enhancing the richness of feature representation
through cross-stream interaction. Subsequent studies, such
as AudiolnceptionNeXt, further combined self-supervised
contrastive learning to achieve superior performance on
datasets like EPIC-SOUNDS compared to Transformer
models, verifying the advantages of CNNs in computational
efficiency and feature generalization. The other pathway
relies on Transformer-based methods [4] [5], which model
the long-range dependency of audio sequences through self-
attention mechanisms. For instance, some studies use su-
pervised learning to directly optimize classification loss
or employ self-supervised pre-training (e.g., masked audio
modeling) to mine latent semantic structures, particularly
demonstrating stronger global contextual modeling capabil-
ities in processing long-duration audio clips. Additionally,
cross-architecture fusion strategies (such as feature concate-
nation or dynamic weight fusion of CNNs and Transform-
ers) have gradually become a trend, improving classification
accuracy by integrating multi-scale features while mitigat-
ing computational costs through lightweight designs.

These approaches all revolve around the time-frequency
characteristics of audio data, aiming to solve the problem of
distinguishing interaction categories in the complex acous-
tic environment of EPIC-SOUNDS and providing techni-
cal support for intelligent perception in kitchen scenar-
ios. EPIC-SOUNDS Audio-Based Interaction Recognition
faces notable challenges in multi-scale time-frequency fea-
ture modeling, cross-scenario generalization, and balanc-
ing efficiency with accuracy, where audio signals from di-
verse interactions differ significantly in temporal duration
(short transients vs. long-term activities) and frequency
distribution (high-frequency details vs. low-frequency fun-



damentals), while the dataset’s complex kitchen back-
ground noise requires robust feature extraction to distin-
guish target sounds from clutter, and the imbalance be-
tween Transformer-based models’ high performance but
high computational cost and CNNs’ efficiency but limited
long-term context capture demands innovative lightweight
or hybrid architectures.

To tackle the challenges of multi-scale feature mod-
eling, limited long-range dependency capture, and model
efficiency-accuracy trade-offs, our solution is structured as
follows:

e Multi-branch Optimization of AudiolnceptionNeXt:
Parallel depthwise separable convolutions with diverse
kernel sizes in a single-stream architecture enable si-
multaneous extraction of short-term transient details (via
small kernels) and long-term global frequency semantics
(vialarge kernels), resolving the temporal-frequency vari-
ation challenge in interactions.

¢ Global Dependency Modeling with UniRepLKNet:
UniRepLKNet’s large convolutional kernels model long-
range temporal dependencies in audio sequences, supple-
menting CNNs’ local perception to enhance robustness
against background clutter and contextual ambiguity.

* Dynamic Model Fusion: Adaptive weight adjustment
based on validation performance fuses Audiolnception-
NeXt (high efficiency in local features) and UniRe-
pLKNet (strong global modeling) outputs, optimizing en-
semble decisions without excessive computational over-
head, thus addressing the trade-off between Transformer-
like performance and CNN-like efficiency.

2. Methodology
2.1. AudioInceptionNeXt

AudiolnceptionNeXt is designed to effectively extract
multi-scale time-frequency features from audio signals. It
uses parallel multi-scale depthwise separable convolutional
kernels in its core block. The large-scale kernels cap-
ture long-duration activities and global frequency seman-
tics, while small-scale ones focus on short-duration activi-
ties and local frequency details. For instance, a 3 x 3 kernel
can quickly detect sharp transient sounds, like the click of a
utensil, while an 11 x 11 kernel is better at analyzing more
extended and continuous audio patterns, such as the steady
noise of a running blender.

The overall structure of AudiolnceptionNeXt is based on
amodified ResNet50 architecture. The input stem processes
the log-mel spectrogram, reducing its size while increasing
the number of channels. The model is organized into four
feature stages, with each stage having a specific number of
AudiolnceptionNeXt blocks and channel adjustments. The
classification head at the end is composed of a global av-
erage pooling layer followed by a fully connected layer,

which outputs predictions for the 44 interaction categories
in the dataset.

The AudiolnceptionNeXt block can be formalized as fol-
lows:

Output = Concat(Convsxs(x), Convixg(x)) +2 (1)

where z is the input feature map and Convyyj denotes a
depthwise separable convolution with kernel size k.
During training, data augmentation techniques are used
to improve the model’s generalization ability. Temporal
augmentations include random cropping with a certain du-
ration jitter, and adding Gaussian noise to simulate real-
world noisy environments. Spectral augmentations involve
frequency masking and amplitude scaling. The Stochas-
tic Gradient Descent (SGD) optimizer with appropriate mo-
mentum and weight decay is used, along with a Cosine an-
nealing learning rate scheduler. Multi-GPU training with
SyncBN is employed to speed up the training process.

2.2. UniRepLKNet

Inspired by RepLKNet [6], UniRepLKNet is crafted to
model long-range temporal dependencies in audio se-
quences, which is vital for grasping complex interactions
that occur over extended periods. It uses 31 x 3 depthwise
separable convolutions, decomposed into 1 x 31 (temporal)
and 31 x 1 (frequency) kernels. This decomposition allows
the model to capture temporal dependencies over 310ms
and significantly reduces the number of parameters, leading
to a substantial reduction in computation. For example, in
a long sequence of sounds during a cooking process that in-
volves multiple steps and continuous audio streams, UniRe-
pLKNet can effectively analyze the long-term patterns and
context within these audio signals.

Dilation rates are applied in different stages, expanding
the receptive field up to 1.24s. This enlarged receptive field
enables the model to better understand the overall context
of the audio, which is particularly useful in scenarios where
the relationship between distant audio events matters, such
as in a sequence of actions in a kitchen where one action’s
sound might influence the perception of a later action.

The receptive field calculation for the dilated convolution
is given by:

n i—1
RE =1+ (ki—1)x []s; xdi 2)
i=1 j=1

where k; is the kernel size, s; is the stride, and d; is the
dilation rate at layer .

2.3. Multi-Scale Temporal-Semantic Fusion

As shown in Fig, 1, we employ a late-stage ensemble strat-
egy by integrating the inference results of Audiolnception-
NeXt and UniRepLKNet through adaptive mean fusion.
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Figure 1. Proposed our approach architecture

This approach dynamically balances the complementary
strengths of the two models—AudiolnceptionNeXt’s multi-
scale local feature sensitivity and UniRepLKNet’s long-
range contextual modeling capability—thereby improving
cross-scenario generalization and prediction consistency.

3. Experimental

3.1. Dataset and Evaluation Metrics

The EPIC-SOUNDS dataset for the Audio-Based Inter-
action Recognition challenge is sourced from the EPIC-
KITCHENS project. It contains 100 hours of Full HD video
and audio data, with recordings from 45 kitchens in 4 cities
captured by head - mounted cameras. The dataset has 20
million frames and 90,000 action segments, and is anno-
tated for 44 human - object interaction classes in kitchen
scenarios, based on multi - language narrations. It is split
into train, validation and test sets, where the test set in-
cludes unseen participants and rare action classes, aiming
to test the generalization ability of models.

In the EPIC - SOUNDS Audio - Based Interaction
Recognition competition, the Top - 1 accuracy is a crucial
metric. It measures the proportion of audio samples for
which the model’s most likely predicted interaction class
exactly matches the true class. Mathematically, if we de-
note the total number of test audio samples as N, and the
number of samples where the top - ranked predicted class
by the model is the correct one as C, then the Top - 1
accuracy Atop—1 is calculated by the formula Ay, 1 =
% x 100%. A higher Top - 1 accuracy indicates that the
model is more precise in making its single, best - guess pre-
dictions for the audio - based human - object interaction
classes in the dataset.

3.2. Single model performance

We tested the performance of each model under differ-
ent parameter settings respectively and obtained the results
shown in Table 1. In the testing of single models, the Top-1
accuracy can reach up to 55.83% at maximum, which in-
dicates that these two models have significant advantages
in the decoupled capture of long-term global semantics and
short-term local details in audio signals.

Table 1. Single model performance

index Model ACC@l
0 AudiolnceptionNeXt 55.72
1 AudiolnceptionNeXt 55.70
2 AudiolnceptionNeXt 55.60
3 UniRepLKNet 55.76
4 UniRepLKNet 55.66
5 UniRepLKNet 55.83

3.3. model fusion performance

We performed fusion on the models in Table 2 and used
a weighted method to calculate the mean of the 44 cate-
gory scores across multiple models. A progressive fusion
strategy was adopted, where independent models were first
preliminarily fused, followed by weighted processing of the
fusion results to obtain the final output. Experimental re-
sults show that this approach increased the Top-1 accuracy
to 57.51%. By introducing a dynamic weight allocation
mechanism, our method effectively achieves synergistic in-
tegration of the feature expression advantages of different
architectures across models.



Table 2. model fusion performance

index fusion models weight ACC@1
6 1,2,3,4 [020.20.20.20.2] 57.27
7 6,1,2,3 [0.250.25 0.25 0.25] 56.44
8 6,7,1,5 [0.450.350.10.1] 57.19
9 2,345 [0.150.25 0.25 0.35] 57.36
10 6,8,9 [0.30.30.4] 57.51

4. conclusion

This report presents a methodology centered on model fu-
sion, aiming to enhance the performance of audio classi-
fication tasks. The approach employs a late-stage ensem-
ble strategy, adaptively integrating the inference outputs of
dual models through a mean fusion mechanism to dynam-
ically balance the sensitivity of the AudiolnceptionNeXt
model to local multi-scale features and the capability of the
UniRepLKNet model to capture long-term contextual re-
lationships. Ultimately, this solution achieved a score of
57.51 % in the 2025 EPIC-SOUNDS Audio-Based Interac-
tion Recognition Challenge.
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