
EPIC-KITCHENS - 2019 Challenges Report

Dima Damen, Will Price, Evangelos Kazakos
University of Bristol, UK

Antonino Furnari, Giovanni Maria Farinella
University of Catania, Italy

Abstract

This report summarises the EPIC-KITCHENS 2019

challenges, and their findings. It serves as an introduc-

tion to all technical reports that were submitted to the

EPIC@CVPR2019 workshop, and an official announce-

ment of the winners.

1. EPIC-KITCHENS
The largest dataset in egocentric vision has a number of

unique features that distinguished its collection. Primarily,
the dataset was collected in a non-scripted manner. Partic-
ipants were asked to record all kitchen interactions in their
native environments, i.e. their kitchens, for three consec-
utive days. This enabled capturing daily interactions that
are often not included in scripted recordings, such as bak-
ing or emptying the bin. More importantly, the frequencies
of interactions form a valid prior to daily interactions and
demonstrate a long-tail unbalanced distribution of labels.

In addition to its natural interactions, EPIC-KITCHENS
proposed approaches to enable scalability of collecting an-
notations in video. Videos were narrated by the partici-
pants themselves, providing weak supervision of temporal
boundaries and an open vocabulary description of captured
actions in people’s native languages. While the vocabu-
lary was refined using clustering into semantic classes, the
temporal bounds were altered through Amazon Mechani-
cal Turk (AMT) providing start/end time annotations for
around 40K action segments. The annotations were fur-
ther enriched by annotating bounding boxes of active ob-
jects within each interaction. Around half a million bound-
ing boxes were annotated.

As specified in [2], the test set has been divided into
two distinct subsets, “seen test set (S1)” and “unseen test
set (S2)”. The first includes sequences from the same
kitchens/environments in the training set. S2, on the other
hand, only includes sequences from novel environments,
not observed during training.

August 1st, 2019
Technical Report

Following the release, three challenges were officially
launched via CodaLab on the 20th of September 2019.
Users were requested to submit their predictions to the eval-
uation server, with a maximum daily limit of 1 submission
per team. In Sec. 2, we detail the general statistics of dataset
usage in its first year. The results for the Action Recognition
and Action Anticipation challenges are provided in Sec. 3
and 4 respectively. The winners of the 2019 edition of these
challenges are noted in Sec. 5.

2. Reception and User Statistics
Since its introduction, EPIC-KITCHENS received sig-

nificant attention with a total of 13K page views since April
2018. The dataset has been downloaded 1.5K times, with
international coverage (Fig 1), and the CodaLab competi-
tions have 170 accepted participants. The Action Recog-
nition challenge received the largest number of participants
(103 participants) and submissions (230 submissions). The
Action Anticipation challenge has 44 participants, and re-
ceived 46 submissions. Of these, 10 teams have de-
clared their affiliation and submitted technical reports for
the Action Recognition challenge compared to 5 in the
Action Anticipation challenge. This report includes de-
tails of these teams’ submissions. A snapshot of the com-
plete leaderboard, when the 2019 challenge concluded, is
available at http://epic-kitchens.github.io/
2019#results.

The Object Detection challenge has not received submis-
sions that outperform the baseline. This is, up to our knowl-
edge, due to two key factors. The first is the duration re-
quired to train the models. In [2], we clarify that the model
required 2 weeks to train on an 8-GPU node. The second
is the distinction from other datasets that are typically used
for object detection (e.g. [6, 7]). In EPIC-KITCHENS , the
same instance of an object is labelled several times during
its usage. This introduces dependencies between the anno-
tations which are not typical for object detection from indi-
vidual images. We will be revisiting this challenge in 2020.

3. Action Recognition Challenge
The Action Recognition challenge has been set similar

to previous challenges [1, 8]. In both train and test sets,
the start and end times of an action are given. Different

1

http://epic-kitchens.github.io/2019#results
http://epic-kitchens.github.io/2019#results

Submissions Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
Rank Team Entries Date VERB NOUN ACTION N VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

1 UTS-Baidu 16 05/30/19 69.80 52.27 41.37 90.95 76.71 63.59 63.55 46.86 25.13 46.94 49.17 26.39
2 Bristol-Oxford 2 05/30/19 66.10 47.89 36.66 91.28 72.80 58.62 60.74 44.90 24.02 46.82 43.89 22.92
3 FAIR 9 10/30/19 64.14 47.65 35.75 87.64 70.66 54.65 43.64 40.53 18.95 38.31 45.29 21.13
4 FBK-HUPBA 42 05/29/19 63.34 44.75 35.54 89.01 69.88 57.18 63.21 42.26 19.76 37.77 41.28 21.19
5 UNICT 5 05/05/19 58.99 45.00 35.14 86.70 69.08 57.62 52.23 40.06 19.40 42.12 39.32 20.28
7 NTU 12 05/30/19 61.65 43.63 30.55 87.09 68.65 40.11 48.63 39.62 16.92 33.41 40.57 16.68

11 CA 4 05/31/19 63.29 44.03 29.18 86.24 65.99 46.94 56.35 39.95 12.86 34.83 38.76 10.53
13 RML 47 05/26/19 52.75 39.42 25.04 86.26 64.45 45.22 42.80 34.51 10.66 31.44 35.48 9.51
14 [2] (baseline) - 09/06/18 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 11.57 22.33 30.53 9.78
15 Inria-Facebook 1 10/02/18 43.51 32.94 20.19 84.38 61.66 43.57 28.42 27.99 7.62 24.18 26.83 8.85
17 UGA 34 05/23/19 47.41 28.31 19.76 81.33 53.77 36.98 31.20 21.21 9.83 20.43 22.48 10.23

S2

1 UTS-Baidu 16 05/30/19 58.96 33.90 25.20 82.69 62.27 45.48 30.33 28.83 15.73 28.54 30.52 18.90
2 FAIR 9 10/30/19 55.24 33.87 23.93 80.23 58.25 40.15 25.71 28.19 15.72 25.69 29.51 17.06
3 Bristol-Oxford 2 05/30/19 54.46 30.39 21.99 81.22 55.68 40.59 32.56 21.67 9.83 27.60 25.58 13.52
4 UNICT 5 05/05/19 47.35 28.64 21.37 73.75 51.01 39.47 26.88 22.09 10.53 22.12 23.31 13.98
5 FBK-HUPBA 42 05/29/19 49.37 27.11 20.25 77.50 51.96 37.56 31.09 21.06 9.18 18.73 21.88 14.23
7 CA 4 05/31/19 53.36 28.37 18.47 77.47 50.15 33.63 31.23 22.12 7.24 21.29 22.56 9.40

11 NTU 12 05/30/19 52.78 24.62 16.35 79.72 49.61 22.81 23.31 17.91 9.00 22.02 19.29 9.62
12 RML 47 05/26/19 45.51 24.41 16.08 77.47 50.15 34.14 21.70 17.12 5.16 18.33 18.82 9.27
14 Inria-Facebook 1 10/02/18 39.30 22.43 14.10 76.41 47.35 32.43 20.42 15.96 4.83 16.95 17.72 8.46
15 [2] (baseline) - 09/06/18 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 6.21 13.06 17.52 6.49
17 UGA 34 05/23/19 34.35 17.48 9.08 69.24 37.56 19.46 15.09 10.71 3.68 11.00 12.55 4.77

Table 1: Results on EPIC-KITCHENS Action Recognition challenge - 1 June 2019

Figure 1: Heatmap of countries based on EPIC-KITCHENS
download statistics.

Figure 2: Scatter plot on S1 for all submissions relating
top-1 verb accuracy to top-1 noun accuracy (left) and top-1
action accuracy (right).

from previous approaches, we split the action label into its
parts of speech: ‘verb’ and ‘noun’, where ‘noun’ presents
the prime active object in the interaction. For example, the
action “put apple into bag” would consider ‘apple’ as the
prime noun. Detecting ‘bag’ as the prime noun would be
considered incorrect.

Table 1 shows the challenge results for 2019. This only
lists entries for which a team has been declared and a tech-
nical report submitted. Methods are ranked based on top-1

Figure 3: Scatter plot relating S1 to S2 top-1 accuracy from
all submissions for verbs (left) and nouns (right).

action accuracy (noted by arrow), which was used to decide
on the overall rank. The top-3 submissions are highlighted
in bold. Overall, submissions achieved an overall improve-
ment of 22%, 16% and 21% compared to the baseline pub-
lished in [2] for top-1 verb, noun and action on S1.

Before presenting individual contributions, Fig. 2 shows
an overall scatter plot relating the three top-1 accuracy met-
rics: verb, noun and action. As the figure shows, correlation
is high between predicting verbs, nouns, and actions. In al-
most all cases, top-1 noun accuracy is ⇠20% worse than
its verb counterpart. This could be explained by two facts.
First, the number of noun classes is significantly larger than
verbs classes. Second, most methods use the same architec-
tures, originally designed for video understanding, employ-
ing the full image and global features as input. In fact, the
size of objects, relative to the image, is significantly smaller
than other action datasets. The top-performing method
(UTS-Baidu) utilised Region-of-Interest (RoI) detection to
focus on the object of interest for better noun classification.

We also relate the performance of the same method
across both S1 (seen kitchens) and S2 (unseen kitchens)
subsets in Fig 3. The overall trend shows ⇠ 10% drop be-
tween seen and unseen verb-1 accuracy. The figure shows a
wider spread with some methods overfitting to the seen en-

vironments and under-performing on S2. Results are further
scattered for seen vs. unseen nouns with bigger differences
of ⇠15%.

Following this introduction, we include a further detailed
evaluation of the Action Recognition challenge, along with
the release of 7 pre-trained models for a variety of state of
the art architectures. We next describe the contributions of
each of the teams, based on their technical reports.

3.1. Technical Reports
Technical reports for the Action Recognition challenge,

in order of their overall rank on the public leaderboard, are:
UTS-Baidu (Rank 1) is the top-ranking entry by Uni-
versity of Technology Sydney (UTS) and Baidu Re-
search (BAIDU), referred to as UTS-Baidu in the leader-
board. This is the only submission to utilise the active object
bounding-box annotations to train for the challenge. The
top-K ROI features are max pooled and used to gate the
video’s 3D CNN features.
Bristol-Oxford (Rank 2 - S1, Rank 3 - S2) The second-
ranking entry is multi-modal, utilising RGB, Flow and Au-
dio, along with a novel approach for temporal binding of
modalities, i.e. fusing modalities with a variety of temporal
offsets. An extended version of this work is available at [5].
FAIR (Rank 3 - S1, Rank 2 - S2) In contrast to other sub-
missions, this entry was related to already published work
by the time the challenge has closed. We thus refer the
reader to the publication at [4].
FBK-HUPBA (Rank 4 - S1, Rank 5 - S2) uses an ensem-
ble of variants of long-short term attention (LSTA) mod-
els and hierarchical feature aggregations of a temporal seg-
ment network. While two-stream LSTA is the best individ-
ual model, additional improvement was achieved using the
ensemble.
NTU (Rank 7 - S1, Rank 11 - S2) uses hand pose and
explores a variety of backbones (TSN, I3D, TSM) along
with both early and late fusion of modalities. The report
describes several failure cases on the dataset including chal-
lenging hand detection and the impact of ambiguous or in-
active object detection on the noun accuracy in the dataset.
UGA (Rank 17 - S1, Rank 17 - S2) focuses on actions
as state transformations. While the method does not rank
highly on the leaderboard, the report offers a novel insight
to understanding actions as linear transformations between
two states. The work thus focuses on the actions for which
this applies (e.g. peel, cut, open).

4. Action Anticipation Challenge
EPIC-KITCHENS offered the first action anticipation

challenge, for the research community to explore action an-
ticipation from videos, and compare the methods’ perfor-
mances. Fig 4 summarises the instructions available to par-
ticipants of the challenge. For every annotated action, par-

Figure 4: Expected (left) and rejected (right) action antici-
pation challenge instructions.

ticipants predicted the action by observing a video segment
of any length To (observation time) that precedes the start of
the action by a fixed and predefined anticipation time Ta of
1 second. All submitted technical reports were checked and
participating teams were contacted for further clarification
when needed.

The submissions followed the same format as that of
the recognition challenge, i.e. predicting verbs, nouns and
actions. Table 2 show this challenge’s entries, along with
their public leaderboard rankings. Results are reported us-
ing both test sets (S1 and S2) and the same evaluation met-
rics as in the recognition challenge. Overall, submissions
have improved published baseline in [2] by 3%, 7%, and
9% for top-1 verb, noun and action. We next describe the
contributions based on the team’s technical reports.

4.1. Technical Reprots
Technical reports for the Action Anticipation challenge,

in order of their overall rank on the public leaderboard, are:
UNICT (Rank 1) The method uses a novel combination of
rolled and unrolled LSTMs, as well as modality attention
for RGB, flow and object-based features. The report also
analyses the effect of the anticipation time on the predicted
action accuracy. An extended version of this work is avail-
able at [3].
RML (Rank 2) combines the Multi-Fiber Network with the
Non-Local Neural Network. The network is trained end-
to-end using focal loss. High performance, particularly in
noun prediction is evident in the results.
Inria-Facebook (Rank 3) is made up of two complemen-
tary modules: a predictive model which anticipates actions
directly from visual inputs, and a transitional model which
first predicts the current action, then anticipates the future
from the current timestep onwards. The two predictions are
fused with a linear combination.
NTU (Rank 5 - S1, Rank 5 - S2) uses a variety of CNN
backbones to anticipate verbs and nouns separately, discov-
ering that best performance is achieved by different back-
bones for the two tasks (verbs and nouns). The report also
explores different fusion strategies.
Bonn (Rank 6 - S1, Rank 4 - S2) investigates whether
looking longer into the past (i.e., a longer observation time)
may be beneficial to action anticipation. The approach uses
WaveNet to process I3D features, with a multiheaded atten-

Submissions Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
Rank Team Entries Date VERB NOUN ACTION N VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

1 UNICT 9 05/05/19 31.13 22.93 15.25 78.03 51.05 35.13 22.58 24.26 8.41 17.71 20.05 8.05
2 RML 13 05/30/19 34.40 23.36 13.20 79.07 47.57 31.80 26.36 21.81 5.28 19.47 20.01 5.20
3 Inria-Facebook 14 10/03/18 30.74 16.47 9.74 76.21 42.72 25.44 12.42 16.67 3.67 8.80 12.66 3.85
4 [2] (baseline) - 09/05/18 31.81 16.22 6.00 76.56 42.15 18.21 23.91 19.13 3.47 9.33 11.93 2.64
5 NTU 2 05/21/19 31.15 16.84 5.72 76.43 40.60 15.53 15.24 15.49 3.38 9.16 13.91 3.13
6 Bonn 3 05/31/19 34.94 13.06 5.23 79.07 37.00 16.27 18.88 9.22 1.50 14.47 9.77 2.36

S2

1 UNICT 9 05/05/19 26.63 15.47 9.12 68.11 35.27 21.88 16.58 9.93 3.16 11.08 11.70 4.55
2 RML 13 05/30/19 27.89 15.53 8.50 70.47 34.28 20.38 17.77 12.32 3.28 9.35 12.11 3.84
3 Inria-Facebook 14 10/03/18 28.37 12.43 7.24 69.96 32.20 19.29 11.62 8.36 2.20 7.80 9.94 3.36
4 Bonn 3 05/31/19 32.37 9.66 3.52 73.51 30.83 12.67 15.60 6.51 1.44 12.77 7.22 2.39
5 NTU 2 05/21/19 27.59 9.05 2.77 69.27 25.78 7.82 13.66 5.94 1.25 7.82 7.63 1.45
6 [2] (baseline) - 09/05/18 25.30 10.41 2.39 68.32 29.50 9.63 7.63 8.79 0.89 6.06 6.74 1.20

Table 2: Results on EPIC-KITCHENS Action Anticipation challenge - 1 June 2019

Team Member Affiliations

A
ct

io
n

R
ec

og
ni

tio
n

1� UTS-Baidu Xiaohan Wang University of Technology Sydney,Baidu Research
(wasun) Yu Wu University of Technology Sydney,Baidu Research

Linchao Zhu University of Technology Sydney
Yi Yang University of Technology Sydney

2� FAIR Deepti Ghadiyaram Facebook AI
(deeptigp) Matt Feiszli Facebook AI

Du Tran Facebook AI
Xueting Yan Facebook AI
Heng Wang Facebook AI
Dhruv Mahajan Facebook AI

3� FBK-HUPBA Swathikiran Sudhakaran FBK, University of Trento
(sudhakran) Sergio Escalera CVC, Universitat de Barcelona

Oswald Lanz FBK, University of Trento

A
ct

io
n

A
nt

ic
ip

at
io

n

1� RML Nour Eldin Elmadany Ryerson University
(Nour) Yifeng He Ryerson University

Ling Guan Ryerson University
2� Inria-Facebook Antoine Miech Inria, Ecole Normale Superieure

(masterchef) Ivan Laptev Inria, Ecole Normale Superieure
Josef Sivic Inria, Ecole Normale Superieure, CIRC
Heng Wang Facebook AI
Lorenzo Torresani Facebook AI
Du Train Facebook AI

3� NTU Zhe-Yu Liu National Taiwan University
(zhe2325138) Ya-Liang Chung National Taiwan University

Chih-Hung Liang National Taiwan University
Yun-Hsuan Liu National Taiwan University
Ke-Jyun Wang National Taiwan University
Winston Hsu National Taiwan University

3� Bonn Yaser Souri University of Bonn
(yassersouri) Tridivraj Bhattacharyya University of Bonn

Juergen Gall University of Bonn
Luca Minciullo Toyota Motor Europe

Table 3: Top-3 Winners - 2019 EPIC-KITCHENS Action
Recognition and Action Anticipation challenges

tion module. The proposed approach achieves the highest
verb anticipation performance on both S1 and S2 but under-
performs on noun and hence on action accuracy.

5. 2019 Challenge Winners
Two entries have been excluded from the challenge com-

petitions. These are Bristol-Oxford, ranked second in Ac-
tion Recognition and UNICT, ranked first in Action An-
ticipation . This is because both entries include challenge
organisers, and the teams had longer access to the dataset,
before its official release. Accordingly, Table 3 details the
winners of the 2019 EPIC challenge, announced in Long
Beach as part of EPIC@CVPR2019 workshop. A photo of
the EPIC-KITCHENS team and winners is also in Fig 5.

References
[1] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In Proc. CVPR, 2017. 1

Figure 5: Organisers as well as winners of the two
challenges, during EPIC@CVPR2019 Workshop in Long
Beach, 17 June 2019.

[2] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,
W. Price, and M. Wray. Scaling egocentric vision: The epic-
kitchens dataset. In Proc. ECCV, 2018. 1, 2, 3, 4

[3] A. Furnari and G. M. Farinella. What would you expect? an-
ticipating egocentric actions with rolling-unrolling lstms and
modality attention. In ICCV, 2019. 3

[4] D. Ghadiyaram, D. Tran, and D. Mahajan. Large-scale
weakly-supervised pre-training for video action recognition.
In CVPR, 2019. 3

[5] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen. Epic-
fusion: Audio-visual temporal binding for egocentric action
recognition. In ICCV, 2019. 3

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014. 1

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 1

[8] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset
of 101 human actions classes from videos in the wild. CoRR,
abs/1212.0402, 2012. 1

An Evaluation of Action Recognition Models on EPIC-Kitchens

Will Price
University of Bristol, UK
will.price@bristol.ac.uk

Dima Damen
University of Bristol, UK
dima.damen@bristol.ac.uk

1. Introduction
We benchmark contemporary action recognition models
(TSN [12], TRN [14], and TSM [7]) on the recently
introduced EPIC-Kitchens dataset [1] and release pre-
trained models on GitHub1 for others to build upon. In
contrast to popular action recognition datasets like Ki-
netics [5], Something-Something [2], UCF101 [10], and
HMDB51 [6], EPIC-Kitchens is shot from an egocentric
perspective and captures daily actions in-situ. In this report,
we aim to understand how well these models can tackle the
challenges present in this dataset, such as its long tail class
distribution, unseen environment test set, and multiple tasks
(verb, noun and, action classification). We discuss the mod-
els’ shortcomings and avenues for future research.

2. Models
We benchmark 3 models: Temporal Segment Net-
works (TSN) [12], Temporal Relational Networks
(TRN) [14], and Temporal Shift Module (TSM) based
networks [7], including a variety of their variants. These
models are evaluated under a uniform training and testing
regime to ensure the results are directly comparable. TSN is
the earliest model of the three and both TRN and TSM can
be viewed as evolutionary descendants of TSN, integrating
temporal modelling. In the following paragraphs, we
provide an explanation of how network inputs are sampled
and a brief summary of the design of each network.

Sampling Inputs to the models, snippets, are sampled ac-
cording to the TSN sampling strategy. An action clip is split
into n equally sized segments and a snippet is sampled at a
random position within each of these. For an RGB network,
the input is a single frame and for a flow network it is a stack
of 5 (u, v) optical flow pairs (proposed in the two-stream
CNN [9]).

TSN [12] Temporal Segment Networks propagate each
snippet through a 2D CNN backbone and aggregate the
class scores across segments through average or max pool-
ing. As a consequence, TSN is unable to learn temporal cor-

1github.com/epic-kitchens/action-models

relations across segments. TSN is typically trained on RGB
and optical flow modalities and combined by late-fusion.

TRN) [14] Temporal Relation Networks propagate snip-
pets through a 2D CNN, like in TSN, up to the pre-
classification layer. These produce features rather than class
confidence scores. In order to support inter-segment tem-
poral modelling, these segment-level features are then pro-
cessed by a modified relational module [8] sensitive to item
ordering. Two variants of the TRN module exists: a single
scale version which computes a single n-segment relation,
and a multi-scale (M-TRN) variant which computes rela-
tions over ordered sets of segment features of size 2 to n.
Once the relational features have been computed, they are
summed and fed to a classification layer.

TSM [7] These networks functionally operate just like
TSN, snippets are sampled per segment, propagated through
the backbone, and then averaged. However, unlike TSN, the
backbone is modified to support reasoning across segments
by shifting a proportion of the filter responses across the
temporal dimension. This opens the possibility for subse-
quent convolutional layers to learn temporal correlations.

3. Experiments
In this section, we examine how a variety of factors impact
model performance such as backbone choice, input modal-
ity, and temporal support. We analyse model performance
across tasks from the perspective of the more defining char-
acteristics of the dataset: the long-tail class distribution, and
the domain gap between the seen and unseen kitchen test
sets.

3.1. Experimental details
Tasks EPIC-Kitchens has three tasks within the action
recognition challenge: classifying the verb, noun, and ac-
tion (the verb-noun pair) of a given trimmed video. We fol-
low the approach in [1], and replace the classification layer
of each model with two output FC layers, one for verbs v
and one for nouns n. The models are trained with an av-
eraged softmax cross-entropy loss over each classification
layer: L = 0.5(Ln + Lv). We obtain action predictions

1

https://github.com/epic-kitchens/action-models

from verb and noun predictions assuming the tasks are in-
dependent. Later, we examine the impact of integrating ac-
tion priors computed from the training set for action classi-
fication. Performance on these tasks are evaluated on two
test sets: seen kitchens (S1) and unseen kitchens (S2). The
unseen kitchens test set contains videos from novel environ-
ments, whereas the seen kitchens split contains videos from
the same environments used in training.
Training We train all models with a batch size of 64 for
80 epochs using an ImageNet pretrained model for initial-
isation. SGD is used for optimisation with momentum of
0.9. A weight decay of 5 ⇥ 10�4 is applied and gradients
are clipped at 20. We replace the backbone’s classification
layer with a dropout layer, setting p = 0.7. We train RGB
models with an initial learning rate (LR) of 0.01 for ResNet-
50 based models and 0.001 for BN-Inception models. flow
models are trained with an LR of 0.001. These LRs were
the maximum we could achieve whilst maintaining conver-
gence. The LR is decayed by a factor of 10 at epochs 20
and 40.
Testing Models are evaluated using 10 crops (center and
corner crops as well as their horizontal flips) for each clip.
The scores from these are averaged pre-softmax to produce
a single clip-level score. Fusion results are obtained by av-
eraging the softmaxed scores obtained for each modality.

3.2. Results
Backbone choice To choose a high performing backbone,
we compare BN-Inception [4, 11] to ResNet-50 [3] across
the 3 models, training and testing with 8 segments. We
did not test TSM with BN-Inception as the authors state
that the shift module is harmful unless placed in a residual
branch [7]. The top-1/5 accuracy across tasks is reported in
Table 1 where the results show ResNet-50 to be superior to
BN-Inception in 14/18 cases when examining top-1 action
accuracy across both test sets.
Aggregate performance We now compare models with
ResNet-50 backbones across tasks in Table 1 using top-1/5
accuracy. On the verb task, an intrinsically more temporal
problem than classifying nouns, both M-TRN and TSM out
perform TSN, especially when operating on RGB frames
instead of flow. This can be explained by TSN’s inability
to learn inter-segment correlations as only average or max
pooling is used in aggregating class scores across segments.
TSN flow models outperform their RGB counterparts; this
can be attributed to the network being passed temporal in-
formation in the form of stacked optical flow frames. The
2D convolutions inside the network can learn temporal rela-
tions within the stack. Both (M-)TRN and TSM flow mod-
els outperform TSN flow showing that inter-segment rea-
soning is complimentary to intra-segment reasoning.

Unlike verb classification, noun classification does not
rely on temporal modelling as much since objects can be

recognised from a single frame. TSM and TSN perform
best on this task, with TRN models lagging 2–3% points
behind. A possible explanation for the observed drop is that
the relation module within TRN places heavy emphasis on
extracting temporal relational information, which is of little
relevance in recognising objects. Noun performance drops
considerably across models when switching from RGB to
flow as the former is a much better modality for recognis-
ing objects. Unexpectedly, TSM improves top-1 noun accu-
racy by 1% point over TSN. Additionally, we find all fusion
models improve over the RGB models alone. We hypoth-
esise that the temporal information here is helping disam-
biguate the action relevant object from those that are simply
present in the environment.

Classifying actions, the joint task of classifying both
verb and noun, is clearly very challenging, with the best
top-1 accuracy on actions being 29.9% and 17.9% for the
seen and unseen test set respectively. Even at top-5, the
best results are 49.8% and 32.8%. Despite flow’s superior
results on verb classification on the unseen test set, the infe-
rior noun performance drags flow models below RGB mod-
els on both test sets.

An enduring approach, pioneered by the 2SCNN [9], has
been to ensemble networks trained on different modalities
through late fusion at test-time. Averaged across all model
variants, fusing both modalities results in a 2.9%, 5.8%, and
9.7% relative improvement over the best performing single
modality model for verb, noun, and action classification re-
spectively. The best model on the seen test set is TSM fu-
sion, followed by M-TRN fusion. On the unseen test set,
the trend is reversed with M-TRN out-performing TSM.
Novel environment robustness It is interesting to exam-
ine the relative drop in model performance from the seen to
unseen test set to determine the models’ ability to generalise
to new environments. Table 1 shows that flow models are
more robust to the domain gap between the seen kitchens
and unseen kitchens test sets only suffering an average 22%
relative drop in top-1 action accuracy compared to a 44%
drop for RGB models, and 39% for fused models. The do-
main gap on fused models suggests that the RGB model’s
predictions dominates those of the flow model. We find
that flow models consistently outperform RGB models for
verb classification on the unseen test set. We hypothesis this
is due to the absence of appearance information in optical
flow, forcing flow models to focus on motion. Motion is
more environment-invariant and salient to the classification
of verbs than the visual cues the RGB models will use.
Class performance analysis To further understand the
differences between models, we look at confusion amongst
the top-20 most frequent classes in training in Fig. 1.

The verb classification results show the top-3 verbs (ac-
counting for 53% of the actions in training) dominate pre-
dictions due to the dataset imbalance, with this effect being

2

Verb Noun Action
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

BB Model Modality S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

B
N

-I
nc

ep
tio

n

TSN
RGB 47.97 36.46 87.03 74.36 38.85 22.64 65.54 46.94 22.39 11.30 44.75 26.32
Flow 51.68 47.35 84.63 76.95 26.82 21.20 50.64 42.47 16.76 13.49 33.75 27.52
Fusion 54.70 46.06 87.24 76.65 40.11 24.27 65.81 49.27 25.43 14.78 45.69 29.81

TRN
RGB 58.26 47.29 87.14 76.54 36.32 22.91 63.30 44.73 25.46 15.06 45.66 28.99
Flow 55.20 50.32 84.04 77.67 23.95 19.02 47.02 40.25 16.03 12.77 32.92 27.62
Fusion 61.04 51.83 87.46 79.11 37.90 24.75 63.69 47.35 26.54 16.59 46.37 31.14

M-TRN
RGB 57.66 45.41 86.91 76.34 37.94 23.90 63.78 46.33 26.62 15.57 46.39 29.57
Flow 55.92 51.38 84.44 77.74 24.88 20.69 48.37 40.83 16.78 14.00 34.09 28.75
Fusion 61.12 51.62 87.71 78.42 39.28 26.02 64.36 48.99 27.86 17.34 47.56 32.57

R
es

N
et

-5
0

TSN
RGB 49.71 36.70 87.19 73.64 39.85 23.11 65.93 44.73 23.97 12.77 46.14 26.08
Flow 53.14 47.56 84.88 76.89 27.76 20.28 51.29 42.23 18.03 13.11 35.18 27.83
Fusion 55.50 45.75 87.85 77.40 41.28 25.13 66.53 48.11 26.89 15.40 47.35 30.01

TRN
RGB 58.82 47.32 86.60 76.92 37.27 23.69 62.96 46.02 26.62 15.71 46.09 30.01
Flow 55.16 50.39 83.87 77.71 23.19 18.50 47.33 40.70 15.77 12.02 33.08 27.42
Fusion 61.60 52.27 87.20 79.55 38.41 25.74 63.37 47.87 27.58 17.79 46.44 32.20

M-TRN
RGB 60.16 46.94 87.18 75.21 38.36 24.41 64.67 46.71 28.23 16.32 47.89 29.74
Flow 56.79 50.36 84.91 77.67 25.00 20.28 48.70 41.45 17.24 13.42 34.80 29.02
Fusion 62.68 52.03 87.96 78.90 39.82 25.88 64.94 49.03 29.41 17.86 48.91 32.54

TSM
RGB 57.88 43.50 87.14 73.85 40.84 23.32 66.10 46.02 28.22 14.99 49.12 28.06
Flow 58.08 52.68 85.88 79.11 27.49 20.83 50.27 43.70 19.14 14.27 36.90 29.60
Fusion 62.37 51.96 88.55 79.21 41.88 25.61 66.43 49.47 29.90 17.38 49.81 32.67

Table 1: Backbone (BB) comparison using 8 segments in both training and testing evaluating top-1/5 accuracy across tasks.
S1 denotes the seen test set, and S2 the unseen test set. Cells are coloured on a per column basis: low high.

especially pronounced in the unseen test set. Classes out-
side the top-20 are rarely correctly classified and instead are
classified into one of the majority classes. The fine-grained
nature of the verbs seems to pose challenges, particularly
in the unseen test set, with similar classes being confused,
such as ‘move’ with ‘put’/‘take’, ‘turn’ with ‘mix’, and ‘in-
sert’ with ‘put’. TSN shows increased confusion between
classes that differ primarily in their temporal aspects (e.g.
‘put’ vs ‘take’), compared to TSM and TRN. The generic
class ‘move’ is hardest to classify, for all models.

For noun classification, the confusion matrices show the
models don’t struggle as much to classify less frequent
classes compared to verb classification. This is likely as
a result of the models benefiting from pretraining on the
large-scale ImageNet dataset. However, when fine-tuned,
some overfitting to seen environments is observed, as the
unseen test set matrices demonstrate that the models gen-
eralise less well to new objects. Like the verb results, the
fine-grained classes pose a challenge with confusion be-
tween similar objects like ‘fork’ with ‘spoon’, and ‘bowl’
with ‘plate’ occurring. Another interesting contrast between
the verb and noun tasks is that the top-20 verbs almost never
get misclassified into any of the classes outside the top-20,
whereas for nouns, there are more misclassifications of top-
20 nouns into the long-tail.

For action classification, the models perform well on fre-

quent actions, but suffer more misclassifications into the
long tail than nouns (as evidenced by the confusion into
‘other’ classes). Confusion within the top-20 actions high-
light an issue not visible from the verb and noun matrices:
semantically identical classes like ‘turn-on tap’ are con-
fused with ‘open tap’. Whilst these are different classes in
the dataset, they refer to the same action. This highlights
an issue with the open vocabulary annotation process em-
ployed by the dataset: annotators may use different phrases
for describing the same action.

We provide qualitative examples in Fig. 2 where TSM
and M-TRN correctly classify the actions, but TSN fails. In
the top example TSN confuses ‘put’ and ‘take’ as a result of
averaging the scores across segments, and thus discarding
temporal ordering. M-TRN and TSM show a much larger
disparity between the scores of these classes indicating they
have better learnt the difference. In the bottom example,
TSN again struggles to correctly classify the action. The
temporal bounds are quite wide and capture frames just af-
ter someone has picked up a bowl, they then open the cup-
board and are about to place the bowl. M-TRN and TSM,
through their ability to draw correlations across segments,
are able to disambiguate the correct class from the action
which came before and comes after.

Temporal support How many frames/optical flow snip-
pets does the network need to see before performance sat-

3

Figure 1: Fusion models’ performance on top-20 most frequent classes in training. Classes are ordered from top to bottom
in descending order of frequency and any classes outside the top-20 are grouped into a super-class labelled ‘other’. [Best
viewed on screen]

4

16976

15747

"Take plate"

open
close
dry
take
put

0.04
0.11
0.14

0.30
0.36

TSN

move
dry
put

close
take

0.03
0.04

0.08
0.25

0.56

M-TRN

move
dry

close
put
take

0.02
0.06

0.11
0.24

0.51

TSM

move
close
open
take
put

0.01
0.10
0.12

0.34
0.38

TSN

move
put

close
take
open

0.04
0.13
0.14
0.15

0.51

M-TRN

move
close
take
put

open

0.01
0.10

0.13
0.24

0.47

TSM

"Open cupboard"

Figure 2: Two examples demonstrating where models capable of temporal reasoning, TRN and TSM, improve over TSN.
The bar charts show the model’s scores on the above example with the correct class’ score shown in green.

urates? We examine the answer to this question by train-
ing models with different numbers of segments, present-
ing results in Fig. 3. Overall, flow models benefit more
from increasing temporal support, showing monotonically
increasing performance, unlike RGB models whose perfor-
mance saturates at 8 frames, even dropping for the action
task when using 16 frames. Curiously, the RGB TSM model
is severely harmed by using 16 segments instead of 8, un-
like its flow counterpart whose performance improves mov-
ing from 8 to 16 segments. This is in contrast to the authors
results on Kinetics and Something-something which show
an improvement in using 16 frames over 8. This drop was
consistently observed across varying LRs suggesting this is
not due to a suboptimal learning rate.

Action priors In the previous sections, action predictions
have been computed assuming independence between verbs
and nouns

P (A = (v, n)) = P (V = v)P (N = n), (1)

however this is naïve as verb-noun combinations aren’t all
as equally likely. For example, it is much more probable
to observe ‘cut onion’ than ‘cut chopping board’. In Long-
term Feature Banks [13], the authors propose leveraging the
prior knowledge of verb-noun co-occurrence in the training
set µ(v, n) to weight the action prediction, i.e.

P (A = (v, n)) / µ(v, n)P (V = v)P (N = n). (2)

Top-1 Top-5

Model Modality S1 S2 S1 S2

TRN RGB +0.05 +1.33 +0.14 +1.43
Flow +0.01 +1.43 -0.50 +0.75

M-TRN RGB -0.14 +0.99 +0.70 +2.80
Flow -0.25 +0.68 -0.61 +0.24

TSM RGB +0.02 +0.82 +0.24 +2.42
Flow -0.25 +0.89 -0.83 +0.44

Table 2: Percentage point improvement on action task when
using action prior across 8-segment ResNet-50 models.

The method in Eq. 2 does not allow zero-shot learning of
unseen verb-noun combinations. To remedy this, we apply
Laplace smoothing to µ to avoid eliminating the possibil-
ity of recognising unseen actions. We evaluate the relative
benefit of using action priors in Table 2, finding it provides
little benefit on the seen test set, but improves performance
on the unseen test set by ⇠ 1% point for top-1 accuracy.

4. Released Models
All models required to reproduce the results in Table 1

are made available. We release both RGB and flow mod-
els whose predictions can be combined to produce fusion
results. To reproduce or compare to these results, the test
set predictions should be submitted to the EPIC-Kitchens

5

Figure 3: Top-1 accuracy on the seen test set when varying number of segments (during both training/testing) for M-TRN
and TSM.

GFLOP/s Params (M)
Model RGB Flow RGB Flow
TSN 33.12 35.33 24.48 24.51
TRN 33.12 35.32 25.33 25.35
M-TRN 33.12 35.33 27.18 27.21
TSM 33.12 35.33 24.48 24.51

Table 3: Model parameter and FLOP/s count using a
ResNet-50 backbone with 8 segments for a single video.

leaderboard2 to calculate the performance.
The complexity of the models using ResNet-50 back-

bone is compared in Table 3,

5. Conclusion
We have benchmarked 3 contemporary models for ac-

tion recognition and analysed their performance, highlight-
ing areas of good and poor performance. TSM is competi-
tive with M-TRN, and both outperform TSN. These results
highlight the necessity for temporal reasoning to recognise
actions in EPIC-Kitchens. Yet, the relatively low scores
for top-1 accuracy show the challenge is far from solved.
Particular issues common to all models are the long-tailed
nature of the dataset, fine-grained classes, and difficulty in
generalising to unseen environments where we observe a
significant drop across all metrics.

References
[1] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Scaling egocentric vision: The epic-kitchens
dataset. In ECCV, 2018.

[2] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

2https://epic-kitchens.github.io/2019#challenges

Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax,
and Roland Memisevic. The "something something" video
database for learning and evaluating visual common sense.
In ICCV, 2017.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015.

[5] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset, 2017.

[6] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: a large video database for human motion recogni-
tion. In ICCV, 2011.

[7] J. Lin, Chuang. Gan, and S. Han. Temporal shift module for
efficient video understanding. arXiv, 2018.

[8] Adam Santoro, David Raposo, David G Barrett, Mateusz
Malinowski, Razvan Pascanu, Peter Battaglia, and Timothy
Lillicrap. A simple neural network module for relational rea-
soning. In NeurIPS, 2017.

[9] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In
NeurIPS, 2014.

[10] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild, 2012.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015.

[12] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks for action recog-
nition in videos. TPAMI, 2019.

[13] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krähenbühl, and Ross Girshick. Long-Term
Feature Banks for Detailed Video Understanding. In CVPR,
2019.

[14] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal
relational reasoning in videos. In ECCV, 2018.

6

https://epic-kitchens.github.io/2019#challenges

Baidu-UTS Submission to Epic-Kitchens Action Recognition Challenge 2019

Xiaohan Wang1,2, Yu Wu1,2, Linchao Zhu2, Yi Yang2

{xiaohan.wang-3,yu.wu-3,linchao.zhu}@student.uts.edu.au; yi.yang@uts.edu.au
1Baidu Research, 2CAI, University of Technology Sydney

Abstract

In this report, we introduce our submission to the Epic-
Kitchens Action Recognition Challenge. We utilize object
detection features to guide the training of 3D CNN. Addi-
tionally, to strengthen the interaction between the features
and avoid gradient exploding, we introduce a Gated Feature
Aggregator module. Experimental results demonstrate our
approach can significantly improve the action recognition
accuracy of egocentric videos.

1. Introduction

Egocentric action recognition is a challenging task. Due
to the intense camera moving and the absence of pose in-
formation, it is difficult to locate which object human is in-
teracting with. To address this problem, we utilize object-
related features to guide 3D CNN. Specifically, we extract
the object feature from the context frames using detection
models. And this feature is sent to a Gated Feature Aggre-
gator module with the clip feature to produce a new repre-
sentation for the final classification. This module can sta-
bilize the training process and strengthen the interaction of
the two kinds of activations. Our method outperforms the
baseline models and achieves the state-of-the-art on the test
sets.

2. Our Approach

As shown in Fig. 1, our framework consists of two
branches. The first 3D CNN branch takes the sampled video
clip as input and produces a clip feature. The second branch
aims to extract the object-related features from the context
frames. We sampled the frames within a window size w
at the center of the current clip. Then the pretrained ob-
ject detector processes them frame by frame. We choose
the top-K bounding boxes with the highest score and use
RoIAlign [7] to get the features from the feature maps of the

⇤Work was done when Xiaohan Wang and Yu Wu interned at Baidu
Research. Part of this work was done when Yi Yang was visiting Baidu
Research during his Professional Experience Program.

2D CNN

3D CNN

Context Frames

Video Clip

Top-K Features

GFA Classifier

O

…

Clip Feature

Max Pooling

Faster R-CNN

Object Feature

…

V

RPN

RoI Align

Figure 1. The overall framework of our approach.

2D CNN. After that, the top-K features are max pooled and
send to the Gated Feature Aggregator (GFA) module with
the clip feature. This module can guide the model to utilize
the object-related information and find more discriminative
channels. We describe the details of GFA in Sec. 2.2. The
output of GFA is our final feature and used to classify verbs
and nouns.

2.1. Base Models

We use three 3D CNN backbones to extract video clip
features. The first one is I3D [3] which is proposed by Car-
reira and Zisserman. They inflate 2D CNN architectures to
3D and initialize the network with ImageNet [5] pretrained
weights. We use the two stream I3D for verb classification
and RGB I3D for noun classification since we suppose op-
tical flow doesn’t contain enough information of object ap-
pearance. The other two backbones we used are 3D ResNet-
50 [6] and 3D ResNeXt-101[6]. They have similar architec-
tures as the 2D models, but all convolutional kernels of them
have spatial-temporal three dimensions. All the three 3D
CNN backbone are pretrained on the Kinetics-400 dataset
[3].

We use Faster R-CNN [11] pipeline to detect objects
and extract object features. The backbone of the detector
is 2D ResNeXt-101 [13] with FPN [9], which is trained
on 1600-class Visual Genome [8, 1] and then finetuned on
Epic-Kitchens [4] detection dataset. We train two detectors
following the above steps. One is 32 ⇥ 8d ResNeXt-101

1

Scale

Concatenate

Linear

Element-wise multiply

Sigmoid

OV

GFA-A

Linear

Element-wise multiply

Sigmoid

OV

GFA-B

Figure 2. The two different types of GFA.

with 1024-dim output, and the other is 64 ⇥ 4d ResNeXt-
101 with 2048-dim output.

2.2. Gated Feature Aggregator

Wu et al. [12] propose to concatenate the object fea-
ture and the clip feature directly as the final representation.
However, in our experiments, this method is sensitive to the
backbones of 3D CNN and detector. When the two branches
have different backbones, e.g., I3D and ResNext, the train-
ing loss is difficult to converge thus the final performance
is not improved. To stabilize the training process and lever-
age the interdependencies of these two features, we design
a Gated Feature Aggregator (GFA) module. As illustrated
in Fig.2, GFA has two types.

GFA-A. Since the amplitudes of the object feature o and
the clip feature v might be different, we scale o to enforce
it’s amplitude be approximate with v. The scaling opera-
tion can be performed by dividing a scalar. Another way
of scaling is to multiply the `2-normed o by the amplitude
of v. After that, the concatenated o and v is transformed to
a new representation by self-gating mechanism [10]. For-
mally, the output feature is computed as follows,

F = �(W [v, scale(o)] + b) · [v, scale(o)], (1)

where [] indicates concatenation. We have two motivations
behind this design. First, we wish to avoid the gradient ex-
plosion by scale operation. Second, we want to strengthen
the object-related channel using the gating operation.

GFA-B. The instability of the training process is mainly
caused by the concatenation operation. In this type, we
multiply gated o by v in an element-wise manner instead
of concatenation. The final representation F is obtained as
follows,

F = �(Wo+ b) · v. (2)

3D CNN Detector GFA top-1 top-5
ResNet-50 - - 55.62 81.60

ResNeXt-101 - - 57.43 81.46
I3D RGB - - 59.38 82.78
I3D Flow - - 56.65 80.79

I3D two-stream - - 61.44 83.60
ResNet-50 1024 dim Type A 57.61 82.64

Fusion - - 63.15 84.57

Table 1. Performance of different models for verb recognition on
the new train/val set.

3D CNN Detector GFA top-1 top-5
ResNet-50 - - 25.07 46.84

ResNeXt-101 - - 25.68 46.52
I3D RGB - - 27.92 52.85
ResNet-50 1024 dim Type A 31.79 56.80
ResNet-50 2048 dim Type A 32.99 57.81

ResNeXt-101 1024 dim Type A 30.79 56.69
I3D RGB 1024 dim Type B 31.14 58.42
I3D RGB 2048 dim Type B 34.13 60.36

Fusion - - 39.09 65.00

Table 2. Performance of different models for noun recognition on
the new train/val set.

2.3. Action Re-weighting

The actions are determined by the pairs of verb and noun.
The basic method of obtaining the action score is to calcu-
late the multiplication of verb probability and noun prob-
ability. However, there are some verb-noun pairs that do
not exist in reality, e.g. “open the knife”. Following the
approach in [12], we consider the occurrence frequency of
action in training set as its prior. The final action probability
is re-weighted by the prior.

3. Experiments

3.1. Results

We train our model for verb and noun independently. To
validate our models, we split the training data to the new
training and validation set following [2].

For verb recognition, as shown in Table 1, we train five
different models on the new training set and evaluate their
top-1 and top-5 accuracy on the validation set. The two-
stream I3D model (late fusion of I3D RGB and I3D flow)
obtains the best performance, which can achieve 61.44%
top-1 accuracy and 83.60% top-5 accuracy. Our ResNet-50
with GFA improves the top-1 accuracy by 1.99% than the
baseline model, where GFA is type A with the norm and
scale operation.

For noun recognition, as shown in Table 2, we experi-
ment with eight models on the new train/val set. Due to

2

Model data split re-weighting verb noun action
top-1 top-5 top-1 top-5 top-1 top-5

fused model train/val w/o 63.15 84.57 39.09 65.00 27.68 48.07
fused model train/val w 63.15 84.57 39.09 65.00 28.98 49.78
fused model trainval/test-s1 w 69.80 90.95 52.27 76.71 41.37 63.59
fused model trainval/test-s2 w 59.68 82.69 34.14 62.38 25.06 45.95

Table 3. Performance of the fused model on the train/val and trainval/test set.

the large margin improvement of the performance of noun
recognition, we try more combinations of 3D CNN, detec-
tors, and GFA. ResNet-50 with 2048-dim detection features
and GFA-A results in 7.92% improvement of top-1 accu-
racy. Besides, I3D RGB model with 2048-dim detection
features and GFA-B achieves the highest top-1 accuracy at
34.13%.

For action recognition, as shown in Table 3, we calculate
the final action top-1 and top-5 accuracy of our fused model
on train/val split in two ways. The re-weighting strategy
improves the top-1 accuracy by 1.30% and top-5 accuracy
by 1.71%.

For the final submission, we train the above models on
the whole training data. Our model ensemble achieves the
best performance on both seen(s1) and unseen(s2) test set.
The final results are shown in Table 3.

3.2. Implementation

In all experiments, the inputs for 3D CNN are 64-frame
video clips. The clips are randomly scaled and cropped to
224 ⇥ 224. For verb recognition, we randomly sample 64
frames per video segment at the training time and uniformly
sample frames for testing. As for noun recognition, we ran-
domly sample the continuous 64 frames with a temporal
stride of 2 for training and sample 64 frames around the
center of the video segment for testing. The window size
of the context frames for detection models is 12 seconds
and the sample rate of frames is 2 fps. We choose the top-
10 bounding boxes of the context frames to extract object
features. We adopt the stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 0.0001 to optimize
the model for 50 epochs. The overall learning rate is initial-
ized to be 0.01(verb) / 0.003(noun), then dropped ten times
at the 30th epoch.

4. Conclusion

In this paper, we report the method details for the Epic-
Kitchens action recognition task. We modify the LFB
model to stabilize the training process and strengthen the
interaction of different activations. Our model achieves the
state-of-the-art on both seen and unseen test data.

References

[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In CVPR, 2018.

[2] Fabien Baradel, Natalia Neverova, Christian Wolf, Julien
Mille, and Greg Mori. Object level visual reasoning in
videos. In ECCV, 2018.

[3] João Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017.

[4] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Scaling egocentric vision: The epic-kitchens
dataset. In ECCV, 2018.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[6] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet? In CVPR, 2018.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask r-cnn. In ICCV, 2017.

[8] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. IJCV, 2016.

[9] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[10] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable
pooling with context gating for video classification. arXiv
preprint arXiv:1706.06905, 2017.

[11] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. T-PAMI, 2015.

[12] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krahenbuhl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In CVPR,
2019.

[13] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In CVPR, 2017.

3

Temporal Binding Network (TBN)
EPIC-Kitchens Action Recognition Challenge Entry

Evangelos Kazakos
University of Bristol

Arsha Nagrani
University of Oxford

Andrew Zisserman
University of Oxford

Dima Damen
University of Bristol

Abstract

We propose a method to fuse multiple modalities (RGB,

Flow and Audio) for egocentric (i.e. first-person) action

recognition, through a novel architecture for temporal-

binding. Our temporal binding network (TBN) fuses modal-

ities within a range of temporal offsets, along with mid-level

fusion and sparse temporal sampling of fused representa-

tions. TBN is trained end-to-end, outperforming individual

modalities as well as late-fusion of modalities.

Our method achieves state of the art results on both the

seen and unseen test sets of EPIC-Kitchens.

1. Introduction
In this work, we explore audio as a prime modality to

provide complementary information to visual modalities
(appearance and motion) in egocentric action recognition.
While audio has been explored in video understanding in
general [1, 2, 8, 9, 11], the egocentric domain in particular
offers rich sounds resulting from the interactions between
hands and objects, as well as the close proximity of the
wearable microphone to the undergoing action. Audio is a
prime discriminator for some actions (e.g. ‘wash’, ‘fry’) as
well as objects within actions (e.g. ‘put plate’ vs ‘put bag’).
At times, the temporal progression (or change) of sounds
can separate visually ambiguous actions (e.g. ‘open tap’ vs
‘close tap’). Audio can also capture actions that are out of
the wearable camera’s field of view, but audible (e.g. ‘eat’
is heard but not seen). Conversely, other actions are sound-

less (e.g. ‘wipe hands’) and the wearable sensor might cap-
ture irrelevant sounds, such as talking or music playing in
the background. The opportunities and challenges of incor-
porating audio in egocentric action recognition allow us to
explore new multi-sensory fusion approaches, particularly
related to the potential temporal asynchrony between the
action’s appearance and the discriminative audio signal –
the main focus of our work.

In Fig. 1, we show an example of ‘breaking an egg
into a pan’ from the EPIC-Kitchens dataset. The distinct
sound of cracking the egg, the motion of separating the egg

Figure 1: As the width of the temporal binding window in-
creases (left to right), modalities (appearance, motion and
audio) are fused with varying temporal shifts.

and the change in appearance of the egg occur at differ-
ent frames/temporal positions within the video. Approaches
that fuse modalities with synchronised input would thus be
limited in their ability to learn such actions. In this work, we
explore fusing inputs within a temporal window, which we
refer to as the Temporal Binding Window (TBW) (Fig 1),
allowing the model to train using asynchronous inputs from
the various modalities. Evidence in neuroscience and be-
havioural sciences points at the presence of such a TBW for
multiple sensory modalities in humans [10, 12, 13].

To the best of our knowledge, the only work that has
explored fusion for action recognition using three modali-
ties (appearance, motion and audio) is [16], employing late-
fusion of predictions. Tested on UCF101, the work shows
audio to be the least informative modality for third person
action recognition (16% accuracy for audio compared to
80% and 78% for spatial and motion). A similar conclu-
sion was made for other third-person datasets (AVA [5]).
In this work, we show audio to be a competitive modality
for egocentric AR on EPIC-Kitchens, achieving comparable
performance to appearance. We also report state-of-the-art
performance using mid-level fusion within a temporal bind-
ing window.

2. The Temporal Binding Network
Our goal is to find the optimal way to fuse multi-

ple modality inputs while modelling temporal progression
through sampling. We first explain the general notion of
temporal binding of multiple modalities in Sec 2.1, then de-
tail our architecture in Sec 2.2.

2.1. Multimodal Temporal Binding
Consider a sequence of samples from one modality in a

video stream,

mi = (mi1,mi2, · · · ,miT/ri) (1)

where T is the video’s duration and ri is the modal-
ity’s framerate (or frequency of sampling). Input samples
are first passed through unimodal feature extraction func-
tions fi. To account for varying representation sizes and
frame-rates, most multi-modal architectures apply pooling
functions G to each modality in the form of average pool-
ing or other temporal pooling functions, before attempting
multimodal fusion. Given a pair of modalities m1 and m2,
the final class predictions for a video are hence obtained as
follows:

y = h
�
G(f1(m1)), G(f2(m2))

�
(2)

where f1 and f2 are unimodal feature extraction functions,
G is a temporal aggregation function, h is the multimodal
fusion function and y is the output label for the video. In
such architectures (e.g. TSN [14]), modalities are tempo-
rally aggregated for a prediction before different modalities
are fused; this is typically referred to as ‘late fusion’.

Conversely, multimodal fusion can be performed at each

time step as in [4]. One way to do this would be to syn-
chronise modalities and perform a prediction at each time-
step. For modalities with matching framerates, synchro-
nised multi-modal samples can be selected as (m1j ,m2j),
and fused according to the following equation:

y = h
�
G(fsync(m1j ,m2j))

�
(3)

where fsync is a multimodal feature extractor that produces
a representation for each time step j, and G then performs
temporal aggregation over all time steps. When frame rates
vary, and more importantly so do representation sizes, only
approximate synchronisation can be attempted,

y = h
�
G(fsync(m1j ,m2k))

�
: k = djr2

r1
e (4)

We refer to this approach as ‘synchronous fusion’ where
synchronisation is achieved or approximated.

In this work, however, we propose fusing modalities
within temporal windows. Here modalities are fused within
a range of temporal offsets, with all offsets constrained to

lie within a finite time window, which we henceforth re-
fer to as a temporal binding window (TBW). Interestingly,
as the number of modalities increases, say from two to three
modalities, the TBW representation allows fusion of modal-
ities each with different temporal offsets, yet within the
same binding window ±b:

y = h
�
G(ftbw(m1j ,m2k,m3l)

�
: k 2

⇥
d
jr2
r1

� be, d
jr2
r1

+ be
⇤

: l 2
⇥
d
jr3
r1

� be, d
jr3
r1

+ be
⇤

(5)

Sampling within a temporal window allows fusing modali-
ties with various temporal shifts, up to the temporal window
width ±b. This is different from proposals that fuse inputs
over predefined temporal differences (e.g. [7]).

2.2. TBN with Sparse Temporal Sampling
First, the action video is divided into K segments of

equal width, to allow for sparse temporal sampling and thus
for modelling the temporal progression of the action, as
with previous works [14, 17]. Within each segment, we se-
lect a random sample of the first modality 8k 2 K : m1k.
This ensures the temporal progression of the action is cap-
tured by sparse temporal sampling of this modality, while
random sampling within the segment offers further data for
training.

The sampled m1k is then used as the centre of a TBW
of width ±b. The other modalities are selected randomly
from within each TBW (Eq. 5). Note that the K temporal
binding windows could be overlapping. In total, the input
to our architecture in both training and testing is K ⇥ M
samples from M modalities.

A ConvNet (per modality) is used to extract mid-level

features, which are then fused through concatenating the
modality features and feeding them to a fully-connected
layer, making multi-modal predictions per TBW. We back-
propagate all the way to the inputs of the ConvNets. The
convolutional weights for each modality are shared over the
K segments. Additionally, the mid-level fusion weights and
class predictions are also shared across the segments.

3. Experiments
RGB and Flow: We use the publicly available RGB and
computed optical flow with the dataset [3].
Audio Processing: We extract 1.28s of audio from the
untrimmed video, convert it to single-channel, and resam-
ple it to 24kHz. We then convert it to a log-spectrogram
representation using an STFT of window length 10ms, hop
length 5ms and 256 frequency bands. This results in a 2D
spectrogram matrix of size 256⇥ 256, after which we com-
pute the logarithm.
Training details: We use Inception with Batch Normali-
sation (BN-Inception) [6] as a base architecture, and fuse

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

Audio 43.56 22.35 14.21 79.66 43.68 27.82 32.28 19.10 07.27 25.33 18.16 06.17
TBN Single Model 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31
TBN Ensemble 66.10 47.89 36.66 91.28 72.80 58.62 60.74 44.90 24.02 46.82 43.89 22.92

S2

Audio 35.43 11.98 06.45 69.20 29.49 16.18 22.46 09.41 04.59 18.02 09.79 04.19
TBN Single Model 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69
TBN Ensemble 54.46 30.39 21.99 81.23 55.69 40.60 32.57 21.68 09.83 27.60 25.58 13.53

Table 1: We show how audio-only is a strong modality for EPIC-Kitchens then report single model and ensemble results for
seen (S1) and unseen (S2) test splits.

the modalities after the average pooling layer. We train the
networks using SGD with momentum, using a batch size of
128, a dropout of 0.5, a momentum of 0.9, and a learning
rate of 0.01. Note that our network is trained end-to-end for
all modalities and TBWs. We train with K = 3 segments
over the M = 3 modalities.
TBN Ensemble: We report results of an ensemble of
5 TBNs, where each one is trained with different TBW
widths.
Adding prior knowledge: Following [15], we also com-
pute the probability of an action as the product of the soft-
max and the class a prior. We found this to only be ben-
eficial for the unseen test set S2, and thus report TBN-
Ensemble using this prior for S2 only.
Leaderboard results are shown in Table 1. We also include
the audio stream results to signify its importance in EPIC-
Kitchens. At the closing of the challenge, TBN is ranked
second on the leaderboard for S1 and third for S2. Table 1
shows the reported results on all metrics.
Challenge entry: As two authors are prime contributors to
EPIC-Kitchens collection and running the challenge, we are
not officially competing in the challenge. However, we wish
to note that we did not use any of the test set annotations in
optimising our results.

4. Conclusion
We have shown that the TBN architecture is able to flexi-

bly combine the RGB, flow and audio modalities to achieve
an across the board performance improvement, compared to
individual modalities. Our results are highly competitive on
the final leaderboard.

References
[1] R. Arandjelovic and A. Zisserman. Look, listen and learn. In

ICCV, 2017. 1
[2] Y. Aytar, C. Vondrick, and A. Torralba. See, hear, and read:

Deep aligned representations. CoRR, abs/1706.00932, 2017.
1

[3] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,
W. Price, and M. Wray. Scaling egocentric vision: The epic-
kitchens dataset. In Proc. ECCV, 2018. 2

[4] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
CVPR, 2016. 2

[5] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. A
better baseline for ava. In ActivityNet Workshop at CVPR,
2018. 1

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Proc. ICML, 2015. 2

[7] W. Lin, Y. Mi, J. Wu, K. Lu, and H. Xiong. Action recog-
nition with coarse-to-fine deep feature integration and asyn-
chronous fusion. AAAI, 2018. 2

[8] A. Nagrani, S. Albanie, and A. Zisserman. Seeing voices and
hearing faces: Cross-modal biometric matching. In CVPR,
2018. 1

[9] A. Owens and A. A. Efros. Audio-visual scene analysis with
self-supervised multisensory features. In ECCV, 2018. 1

[10] C. Parise, C. Spence, and M. O. Ernst. When correlation im-
plies causation in multisensory integration. Current Biology,
22(1):46 – 49, 2012. 1

[11] A. Senocak, T.-H. Oh, J. Kim, M.-H. Yang, and I. So Kweon.
Learning to localize sound source in visual scenes. In CVPR,
2018. 1

[12] R. A. Stevenson, M. M. Wilson, A. R. Powers, and M. T.
Wallace. The effects of visual training on multisensory tem-
poral processing. Experimental Brain Research, 225(4):479–
489, 2013. 1

[13] M. T. Wallace and R. A. Stevenson. The construct of the
multisensory temporal binding window and its dysregulation
in developmental disabilities. Neuropsychologia, 64:105 –
123, 2014. 1

[14] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks: Towards good
practices for deep action recognition. In Proc. ECCV, 2016.
2

[15] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krähenbühl,
and R. Girshick. Long-Term Feature Banks for Detailed
Video Understanding. In CVPR, 2019. 3

[16] Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, and X. Xue. Multi-
stream multi-class fusion of deep networks for video classi-
fication. In ACM International Conference on Multimedia,
2016. 1

[17] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal
relational reasoning in videos. In The European Conference

on Computer Vision (ECCV), 2018. 2

FBK-HUPBA Submission to the EPIC-Kitchens 2019

Action Recognition Challenge

Swathikiran Sudhakaran1, Sergio Escalera2,3, Oswald Lanz1

1Fondazione Bruno Kessler, Trento, Italy
2Computer Vision Center, Barcelona, Spain
3Universitat de Barcelona, Barcelona, Spain

{sudhakaran,lanz}@fbk.eu, sergio@maia.ub.es

Abstract

In this report we describe the technical details of our
submission to the EPIC-Kitchens 2019 action recognition
challenge. To participate in the challenge we have devel-
oped a number of CNN-LSTA [3] and HF-TSN [2] vari-
ants, and submitted predictions from an ensemble compiled
out of these two model families. Our submission, visible
on the public leaderboard with team name FBK-HUPBA,
achieved a top-1 action recognition accuracy of 35.54% on
S1 setting, and 20.25% on S2 setting.

1. Introduction

Action recognition from videos is one of the most im-
portant and ever growing research areas in computer vi-
sion. The applications of action recognition range from
video surveillance to robotics, human-computer interaction,
video indexing and retrieval, etc. The availability of graph-
ics processing units (GPUs) and large scale datasets have re-
sulted in the development of several data-driven techniques
for action recognition via deep learning. EPIC-Kitchens
dataset [1] consists of egocentric videos. Recognition of
actions classes in this dataset is challenged by the need for
a fine-grained discrimination of small objects and their ma-
nipulation.

For our participation to the challenge we considered two
different approaches with complementary feature encoding
perspective for classifying action categories:

• CNN-LSTA [3]: late (and shallow) aggregation of
frame level features with a variant of LSTM;

• HF-Nets [2]: early (and deep) aggregation of frame
level features using a temporal gating mechanism.

Fig. 1 shows block diagrams of the two different ap-
proaches, both of them developed by the FBK-HUPBA

team. For a detailed presentation of the two baseline meth-
ods we refer the reader to the original papers [3, 2].

To participate in the challenge we have developed vari-
ants of both CNN-LSTA and HF-TSN baselines. We have
changed backbone CNNs, enriched the aggregation scheme
of LSTA, implemented a structured prediction, and differ-
entiated training strategies. We finally compiled an ensem-
ble out of this pool of trained models. Our submission vis-
ible on the public leaderboard was obtained by averaging
classification scores from ensemble members.

2. CNN-LSTA and variants

Our first family of models is CNN-RNN structured. The
RNN is a Long Short-Term Attention (LSTA) recurrent
unit [3]. In brief, LSTA extends LSTM with built-in at-
tention and a revised output gating. Attention is introduced
to promote discriminative features in the memory updating.
This is done by applying a spatial weight map to the input.
Output pooling provides more flexibility in localizing and
propagating the active memory components.

We have modified CNN-LSTA baseline as follows:

• Backbone: we used ResNet-34, ResNet-50, Incep-
tionV3;

• Pre-training: we utilized pretrained models on Ima-
geNet and Kinetics;

• Aggregation: we used LSTA internal memory as ag-
gregated descriptor for classification as in [3], but we
also aggregated the sequence of output states using
GRU and concatenated its final memory state with that
of the LSTA for classification.

For the variant with Gated Recurrent Unit (GRU), the
output state of LSTA during each time step is spatial aver-
age pooled and applied to two GRUs. The output states of

1

(a) CNN-LSTA (b) HF-TSN

Figure 1: Block diagram illustrating the two model families used for generating the action recognition scores. The first
model in Fig. 1a uses a Long Short-Term Attention (LSTA) module to aggregate the frame level features obtained from a
Convolutional Neural Network (CNN) backbone. This is equivalent to late fusion of the frame level features. In the second
method, Fig. 1b, features from adjacent frames are combined as the inputs move across the CNN layers, followed by a late
fusion of the features obtained at the final layer of the CNN. Thus, the two considered approaches provide complementary
ways to aggregate frame level features.

the GRUs after encoding all the video frames are then con-
catenated to predict the verb, noun and action classes.
The scores generated from GRU and LSTA are then aver-
aged to obtain the corresponding class scores. Structured
prediction is detailed in Sec. 4.

3. HF-TSN and variants

Our second pool are TSN models with hierarchical fea-
ture aggregation [2]. In HF-TSN, features from adjacent
frames of a video interact with each other as the features
are being passed along the layers of a CNN. The interac-
tions are learned and comprises of either differencing or av-
eraging operation, or a mixture of them, via a convolutional
layer. The features corresponding to each spatio-temporal
receptive field, obtained at the final layer of the CNN, are
applied to a linear layer and averaged to obtain the action
class score. The consensus module in Fig. 1b represents the
linear layer followed by averaging operation.

We have modified HF-TSN baseline as follows:

• Backbone: we used ResNet-50 and BNInception.

For the model with ResNet-50, HF blocks are applied at
the input of each of the ResNet-50 blocks. Thus a total of
16 HF blocks are present in this variant as opposed to the
10 present in the model with BNInception.

4. Structured prediction

The labels provided with the dataset are in the form of
verb and noun pairs. An action is defined by the combi-
nation of such verb-noun pairs. So the network should
be able to either correctly predict both the verb and noun
classes in order to combine them into an action class,
or directly predict the action class from which verb and
noun classes can be derived. We trained all the networks as
a multi-task classification problem predicting verb, noun
and action classes. We generated action classes from
the combination of verb and noun labels present in the
dataset. It is important to note that not all combinations
of verb-noun pairs are valid, such as, take-fridge,
open-carrot, cut-salt are unfeasible.

In order to model such inter-dependencies among the
verb and noun classes, we apply the action predic-
tion scores as an instance-specific bias term to the verb
and noun classifiers. For this, the action scores are ap-
plied through two linear layers each to map to the number
of verb and noun classes. The result is then applied to the
output of the corresponding classifier (verb and noun).
This allows the network to learn the dependencies between
the verb and noun classes and prevent it from making
unfeasible predictions consisting of implausible verb and

2

noun combinations. The drawback of this approach is that
we are bound to predict action classes observed during
training.

5. Cross-modal fusion

For LSTA model, we also implement a two stream model
with cross-modal fusion. We follow the approach proposed
in [3] for the two stream implementation.

The LSTA model with ResNet-34 CNN is used as the
appearance stream. For the motion stream, we first trained
a ResNet-34 CNN pre-trained on ImageNet for predicting
verb classes followed by a separate training stage for pre-
dicting verb, noun and acion classes. A stack of optical
flow images corresponding to 5 consecutive frames is used
as the input to the network. The first convolutional layer
of the network is modified to accept an input image with
10 channels and the weights are initialized by averaging the
weights from the three channels of the original network.

Once the appearance and motion stream networks are
trained separately, we combine them using cross-modal fu-
sion and fine-tune the parameters. In order to perform cross-
modal fusion, we first add a Convolutional Long Short-
Term Memory (ConvLSTM) layer, with a hidden size of
512, after the conv5_3 layer of the motion stream. Then
the outputs corresponding to each of the frames from the
conv5_3 layer of the appearance stream are combined us-
ing a 3D convolution layer, which is applied as bias to the
gates of the ConvLSTM layer. Similarly, the output from
the conv5_3 layer of the motion stream is applied as bias
to the gates of the LSTA layer present in the appearance
stream. Finally, the classification scores from the two in-
dividual streams are averaged to obtain the final prediction
score of the video.

6. Training details

In this section we provide details on the training proto-
col. We did not use a held-out validation set for hyperpa-
rameter search or model validation.

6.1. CNN-LSTA variants

We used the same training strategy presented
in LSTA [3], i.e. the networks are trained in two stages.
In the first stage, the classification layers and LSTA layer
(and the GRUs in the case of variant 3) are trained for
200 epochs starting with a learning rate of 0.001 which is
decayed by a factor of 0.1 after 25, 75 and 150 epochs.
During stage 2, the conv5_x layer in the case of ResNet
family of CNNs or Mixed_7x layers in the case of
InceptionV3, are trained in addition to the layers trained
during stage 1. Stage 2 training is done for 150 epochs
with an initial learning rate of 0.0001 which is decayed
by a factor of 0.1 after 25 and 75 epochs. A dropout

of 0.7 is used to avoid overfitting. ADAM algorithm is
used for the optimization of the parameters with a batch
size of 32 during training. 20 frames selected uniformly
across time are used as the input during both training and
evaluation stages. We use random scaling and horizontal
flipping as data augmentation techniques during training
and during evaluation, we average the scores obtained from
five crops (four corner crops and the center crop) and their
horizontally flipped versions. In all the models, LSTA and
GRU with a memory size of 512 is used. The dimension
of the input to the ResNet models is 224 ⇥ 224 and for
InceptionV3 is 299⇥ 299.

6.2. HF-TSN variants

The models are trained for 120 epochs with an initial
learning rate of 0.01 that is decayed by a factor of 0.1 after
50 and 100 epochs. We used a batch size of 32 and dropout
of 0.5 to prevent overfitting. Stochastic Gradient Descent
(SGD) is used as the optimization algorithm. Spatial scal-
ing and random horizontal flipping with temporal jittering
is used as data augmentation techniques. During evaluation,
10 image crops are generated from each frame using crop-
ping and horizontal flipping and their average of scores is
used for predicting the action class of the video. 16 frames
are sampled from each video during training and inference.
The input image dimension is set as 224⇥ 224.

6.3. Two-stream variants

For the flow stream, the network is trained for 700
epochs, for verb classification, with an initial learning rate
of 0.01 which is reduced by 0.5 after 75, 150, 250 and 500
epochs. This acts as a pre-training for the network. After
this, we train the network for action classification with the
same structured prediction technique explained in 4. We
also apply spatial attention to the features at the output of
the conv5_3 layer. We follow the idea proposed in [4]
for applying spatial attention to the motion features. Dur-
ing this stage, the network is trained for 500 epochs with a
learning rate of 0.01. The learning rate is decayed after 50
and 100 epochs by 0.5. SGD algorithm is used for optimiz-
ing the parameter updates of the network in both stages.

For the two stream model, the networks are finetuned
for 100 epochs with a learning rate of 0.01 using ADAM
algorithm. Learning rate is reduced by a factor of 0.99 after
each epoch. We finetune the classification layers, LSTA,
ConvLSTM and conv5_x layers of the two networks in
this stage.

7. Results

The recognition accuracy obtained for each of the se-
lected models and their ensemble are listed in Tab. 1. Since
no validation set is provided with the dataset, we choose
models for ensembling based on their design variability.

3

Method Backbone Top-1 Accuracy (%) Top-5 Accuracy (%) Precision (%) Recall (%)
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

S1

LSTA

Res-34 58.25 38.93 30.16 86.57 62.96 50.16 44.09 36.30 16.54 37.32 36.52 19.00
Res-50 57.81 37.84 29.54 86.14 63.63 49.82 52.76 34.77 16.35 33.94 34.46 18.05
Res-50† 57.69 39.36 29.79 86.77 64.46 50.52 50.83 36.49 17.54 33.68 35.70 17.38
IncV3 57.28 39.32 29.35 86.43 64.32 50.18 54.77 36.08 14.51 34.29 35.64 16.65

LSTA-GRU
Res-50⇤ 57.30 37.59 29.17 85.88 62.97 49.24 49.32 34.79 16.81 34.84 34.33 18.40
Res-34⇤⇤ 60.61 40.84 32.04 87.71 65.93 52.75 53.62 37.29 18.74 36.75 37.30 19.76
Res-34⇤⇤⇤ 61.31 40.93 32.14 87.47 65.28 52.60 50.93 38.23 19.59 37.90 37.47 20.36

LSTA-2S Res-34 62.12 40.41 32.60 87.95 64.47 52.85 52.70 39.66 15.95 36.34 36.88 18.61

HF-TSN BNInc 57.57 39.90 28.09 87.83 65.37 48.63 49.12 35.83 11.38 39.37 37.04 13.84
Res-50 56.69 40.70 29.38 86.47 63.91 49.36 41.88 37.91 10.70 37.86 38.52 13.58

Ensemble 63.34 44.75 35.54 89.01 69.88 57.18 63.21 42.26 19.76 37.77 41.28 21.19

S2

LSTA

Res-34 45.51 23.46 15.88 75.25 43.16 30.01 26.19 17.58 8.44 20.80 19.67 11.29
Res-50 44.38 22.53 15.98 74.29 43.02 30.42 23.36 17.69 7.31 17.39 17.92 10.29
Res-50† 43.53 22.98 16.25 74.70 44.66 30.01 22.05 15.70 7.81 15.73 17.62 10.83
IncV3 44.66 23.76 17.31 75.35 47.97 32.64 24.69 17.80 7.70 16.10 19.38 11.19

LSTA-GRU
Res-50⇤ 43.94 22.16 15.94 73.61 42.47 29.70 23.20 17.84 8.24 17.04 17.71 10.27
Res-34⇤⇤ 45.37 23.49 16.59 74.74 45.24 31.17 30.04 16.05 7.51 16.38 17.93 10.23
Res-34⇤⇤⇤ 44.90 22.60 16.25 74.80 44.62 31.14 32.62 16.45 7.87 17.99 19.41 10.53

LSTA-2S Res-34 48.89 24.27 18.71 77.88 46.06 33.77 27.12 20.12 9.29 22.59 18.91 12.91

HF-TSN BNInc 42.40 25.23 16.93 75.76 48.96 33.32 24.25 20.48 6.29 15.77 21.96 10.05
Res-50 45.48 24.55 17.38 75.32 46.91 33.32 29.44 22.94 7.44 19.11 21.05 10.68

Ensemble 49.37 27.11 20.25 77.50 51.96 37.56 31.09 21.06 9.18 18.73 21.88 14.23

Table 1: Comparison of recognition accuracies with state-of-the-art in EPIC-KITCHENS dataset. †: Kinetics pre-trained; ⇤:
finetuned layers- GRU; ⇤⇤: finetuned layers- GRU+LSTA; ⇤⇤⇤- finetuned layers- GRU+LSTA+Conv5_3

Each selected model has been submitted for evaluation on
the test server. Model ensembling is done by averaging the
prediction scores obtained from individual models. We par-
ticipated to the challenge with the ensemble.

The best performance obtained for S1 using RGB frames
is by the LSTA model with GRUs encoding the output state
of LSTA. The model resulted in a recognition accuracy
of 32.14%. Using the cross-modal fusion technique ex-
plained in Sec. 5, the recognition accuracy improved by
2% (30.16 vs 32.60). By combining the LSTA-2S and
HF-TSN-BNInception models, an improvement of 1% is
obtained. With an ensemble of all the models, the action
recognition accuracy is further improved by 2%.

In S2 setting, the best performance using RGB frames
as input was obtained by HF-TSN model with ResNet-50
backbone (17.38%). A gain of about 3% is obtained using
cross-modal fusion over the LSTA model. A gain of 2%
is obtained from an ensemble of LSTA-2S and HF-TSN-
BNInception. The ensemble of all the models resulted in an
accuracy of 20.25%. This proves that the selection of mod-
els based on the difference in training settings and temporal
encoding techniques was beneficial.

8. Conclusions

We described the details of the two model families and
their variants we ensembled for our submission to the action

recognition task of the EPIC-Kitchens CVPR 2019 chal-
lenge. The recognition accuracy obtained shows that the
two model families perform complementary temporal en-
coding of features. With an ensemble of the proposed meth-
ods, our entry to the challenge achieved the score of 35.54%
on S1 setting, and 20.25% on S2 setting.

References

[1] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler, A.
Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W.
Price, and M. Wray. Scaling Egocentric Vision: The EPIC-
KITCHENS Dataset. In Proc. ECCV, 2018. 1

[2] S. Sudhakaran, S. Escalera, and O. Lanz. Hierarchical Feature
Aggregation Networks for Video Action Recognition. arXiv
preprint arXiv:1905.12462, 2019. 1, 2

[3] S. Sudhakaran, S. Escalera, and O. Lanz. LSTA: Long Short-
Term Attention for Egocentric Action Recognition. In Proc.
CVPR, 2019. 1, 3

[4] S. Sudhakaran and O. Lanz. Attention is All We Need: Nail-
ing Down Object-centric Attention for Egocentric Activity
Recognition. In Proc. BMVC, 2018. 3

4

Team NTU-CML-MiRA EPIC-Kitchens Challenge 2019 Technical Report

Zhe-Yu Liu Ya-Liang Chang Chih-Hung Liang Yun-Hsuan Liu Ke-Jyun Wang
Winston Hsu

National Taiwan University, Taipei, Taiwan
{zhe2325138, yaliangchang, r06922057}@cmlab.csie.ntu.edu.tw,

{tmpss1131, rr123789456tw}@gmail.com, whsu@ntu.edu.tw

Abstract

This report describes our submission to EPIC-Kitchens

challenge 2019 for the action recognition and anticipation

tracks. We experiment both early and late fusion strategies

on RGB and optical flow modalities and tried to use hand

detection and joint positions as auxiliary modalities to en-

hance the results. In addition, we find that different back-

bones have their own advantages and use InceptionV1 with

I3D and Resnet50 with Temporal Shift Module to predict

the verb and noun classes, respectively. Our method finally

achieves top1 accuracy of 61.65%, 43.63%, and 30.55% re-

spectively in verb, noun, and action prediction in the seen

kitchen set.

1. Introduction
EPIC-Kitchens [?] is a large egocentric video dataset

containing annotations of daily activities in the kitchen.
In this work, we investigate the pros and cons of different

modalities, backbones, and fusion strategies for better video
action recognition results.

2. Data Preparation
2.1. Modality

The challenge organizers provide RGB video frames and
optical flow computed by TV-L1 algorithm [?], and our ex-
periments are based on the two modalities. Other poten-
tially helpful modalities we have tried but not included in
our final submission will be discussed in section 9.

2.2. Validation Splitting
The validation splitting scheme follows [?]. We use

videos from participant id 5, 6, and 7 as our unseen vali-
dation set, which consists of 9.2% of training data in terms
of video number. The seen validation set is randomly sam-
pled from the remaining training data and is composed of
around 10% of the training videos.

Figure 1. Examples of different modalities. (a) RGB frames. (b)
Opitcal flows. (c) Hand poses. Note that the RGB frames and
optical flows are given by the EpicKitchen dataset, while the hand
poses are derived by the process in Section 9.1. The hand detection
model is not fine-tuned so hand poses are missing in some frames.

3. Backbones and Performance Comparison
At the beginning of the contest, we tried different kinds

of models as our prediction backbones and found their per-
formance differs when it comes to the prediction of verb

1

classes or noun classes.
InceptionV1 with I3D: Inflated 3D Convolution (I3D)

proposed by Carreira et al. [?] is proven to be a powerful
architecture in the action recognition task. We apply the
inflation technique on top of the Inception model [?] with
weights pre-trained on Kinetics dataset [?] as one of our
backbones.

Resnet50 with TSM: Temporal Shift Module (TSM),
proposed by Lin et al. [?], shifts the feature map along the
temporal dimension for a portion of channels to acquire
temporal receptive fields by only 2D convolution layers.
Because of its simplicity and effectiveness, we also apply
TSM on top of Resnet50 [?] with weights pre-trained on
Kinetics to compare the performance with other backbones.

Resnet50 with TBN: Besides the models mentioned
above, we also tried to insert numerous temporal bilinear
modules designed by Li et al. [?] with Bottleneck Wide TB
setting into Resblocks of Resnet18 and Resnet50. As the
Wide TB blocks shift the temporal dimension and perform
element-wise multiplication, the model can make use of the
temporal information from adjacent frames. However, as
the TB block needs much more parameters even with bot-
tleneck layers, we can not apply it on each Resblocks in
Resnet50. Eventually we only add 2 TB blocks to the Res-
blocks in res3 of Resnet50 according to [?].

Performance comparison: In our experiments, all
backbones are supervised with the noun or verb classes sep-
arately. The result in table 1 and 2 demonstrate that Incep-
tionV1 I3D performs best for verb prediction, and Resnet50
with TSM achieve the best accuracy in terms of noun pre-
diction. Since the performance gaps between the best and
second-best models are large, we decide to use different
models for the classification of verb and noun.

Top1 Acc. (%) Seen Verb Seen Noun

InceptionV1 I3D 47.71 23.15
Resnet50 TSM 40.75 32.78
Resnet50 TBN - 25.09

Table 1. Top1 accuracy of each backbone trained with RGB
modality on seen validation set.

Top1 Acc. (%) Unseen Verb Unseen Noun

InceptionV1 I3D 40.82 11.70
Resnet50 TSM 35.14 18.37
Resnet50 TBN - 9.42

Table 2. Top1 accuracy of each backbone trained with RGB
modality on unseen validation set.

4. Fusion
In order to fully utilize the complementary information

among different modalities, we conducted experiments on

the following fusion strategies. Note that due to the lack of
time, we only tried RGB and optical flow modalities.

Input Fusion: in this manner, we concatenate RGB and
flow to form 5-channel input videos and change the in-
channel number of the first convolution layer to adapt 5-
channel videos. The model weights are initialized from the
optical flow pre-trained one on the Kitchen dataset except
for the first convolution.

Late Fusion: late fusion is to simply average the predic-
tion of models trained with different modalities.

Table 3 provides detailed comparison. Note that using
optical flow actually hurt the performance of noun predic-
tion, therefore the fusion results for noun classification are
not shown.

In the end, we choose the late fusion strategy for our
submission because it is more stable and has a larger per-
formance gain in the seen validation set.

Top1 Acc. (%) Seen Verb Unseen Verb

RGB 47.71 40.82
Flow 49.7 47.87

Input Fusion 50.56 49.12
Late Fusion 53.68 47.68

Table 3. Verb top1 accuracy of InceptionV1 I3D using modality
RGB, optical, and their fusion with different strategies.

5. Training Details
Data Sampling: In the training stage, the numbers of

frames are empirically set to 6 and 12 for noun and verb
models, respectively, in 6 fps. The starting frame of each
clip is randomly sampled in a range such that the end frame
does not exceed the action period.

Data Augmentation: A good data augmentation ex-
pands the space of training data to prevent severe overfit-
ting. First, we resize the shorter part of the video to 256
pixels wide and apply the multi-scale cropping technique
described in [?], which is composed of the corner cropping
and scale-jittering techniques. Cropped frames will be re-
sized to 244⇥ 244 before they are fed into our models.

Hyper parameters: We use Amsgrad optimizer with
learning rate 0.0003, weight decay 0, and decline the learn-
ing rate by 0.6 times per 5 epochs. Since we have model
weights pre-trained on Kinetics except for the last classfica-
tion later, we freeze all the weights but the last layer for the
first 3 epochs to achieve a more steady training.

6. Inference
Sampling Scheme: we sample different crops of testing

videos and use the average of prediction over the crops to
reduce inference bias.

(a) Visually similar classes (b) Wrong attention classes

Figure 2. Some examples of easily confused nouns.

For spatial sampling, we resize the shorter side of the
videos to 256 pixels wide at the beginning. Then, three
squares with width 256 are cropped in the position of the
left side, right side, and center. On the part of temporal sam-
pling, 4 clips with different starting frames are sampled, and
their starting frames are distributed uniformly in the range
such that the end frame does not exceed the action period.

Ensemble: for the final submission version, we inde-
pendently split the other three validation sets following the
same procedure in section 2.2 and train our models on all of
them. The final prediction is fused using bagging.

7. Fail Cases Investigation
We study the easily confused classes and sort out some

common properties about these failed instances.

7.1. Confusion of Noun
Visually similar classes: certain instances cannot be

discriminated by RGB or flow visual features, but require
depth information. For example, plate being falsely recog-
nized as the class bowl in 2% of plate examples using our
TSM model (see Fig. 2 (a)), which has the second highest
frequency over all confused classes.

Action irrelevant objects: images with various objects
need hand gesture features to avoid the action irrelevant ob-
ject being chosen as the target instance. Fig. 2 (a) shows
the action taking the plate and it is not related to bowl.

Wrong attention: some action may relate to more than
one items as hands approach or pass by multiple items. In
this situation, our model may attend to the wrong place. The
classes knife and tap exemplify this (see Fig. 2 (b)), where
the latter is misclassified as the former in near 2% of cases.

7.2. Confusion of Verb
Time reversed classes have similar visual content but

are reversed from each other. One classic instance here is
put, which is misclassified as taking by InceptionV1 I3D
RGB model in 10% of put examples, while taking being
falsely classified as put in 20% of taking examples.

Vague meaning classes states that action is easily mis-
classified as the common action, especially for classes with
less training data. For example, the class wash is misclassi-
fied as put in 8% of wash examples.

Figure 3. YoloV3 hand detection failed cases. (a) Fail to detect
bounding boxes. (b) Merge two hands into one bounding box. (c)
Expected hand bounding boxes.

8. Action Anticipation Track
Apart from action recognition track, we also apply the

same approach in Epic-Kitchens Action Anticipation Chal-
lenge without modification and get 31.15%, 16.84%, and
5.72% top1 accuracies respectively in the verb, noun, and
action prediction in the seen test set. Our temporal sam-
pling range is set to [t� 5, t� 1] in seconds, where t is the
starting time of the target action.

9. Future Work
9.1. Hand Bounding Box and Pose

Since the Epic-Kitchens dataset is mostly composed of
actions by hands, we expect that hand poses could be a cru-
cial modality. We use human detection from YoloV3 [?] for
hand detection and Openpose [?] for hand pose detection
given the bounding boxes from YoloV3. We connect the
key points following Openpose and make it an RGB image
as an input modality as shown in Fig. 1. Due to the time
limit, both models are used without fine-tuning, so the per-
formance is not ideal (the model may fail to detect hands
in some frames or include two hands in the same bounding
box, see Fig 3). Improving the first-person view hand de-
tection is a potential future work to increase the robustness
for the hand pose modality.

9.2. Object Detection
Inspired by [?] that giving focus on the regions of in-

teresting objects can improve object awareness for higher
noun prediction, our recognition task could also benefit
from objects detection results. Among several object de-
tection methods including region proposal based ones such
as Fast-RCNN [?] and Faster-RCNN [?], non-region pro-
posal based like SSD [?], and end-to-end learning based like
YOLOv3 [?], we choose YOLOv3 for the sake of the model
complexity and the number of trainable parameters.

Although we did not have the detection model converge
in the Epic-Kitchens dataset, we plan to employ the deteciot
model with our recognition model by the following two ap-
proaches in the future: 1. Extract feature maps from the
three output layers of YOLOv3 and rescale them such that
it can be concatenated with the feature maps of the mid-
dle layers in our recognition models. 2. Place the fine-
tuned YOLOv3 in front of our recognition model to ex-

tract bounding boxes as auxiliary input channels for object-
wisely semantic information, and train the whole architec-
ture in an end-to-end manner.

10. Conclusion
In this challenge, we exploit advantages and disadvan-

tages among several neural network backbones and fusion
strategies of multiple modalities. Our method gets competi-
tive results in the action recognition and anticipation tracks.
Although we do not have time to bring the hand, pose, and
object box modalities into play, according to the analysis
in section 7, there should be room for improvement when
these modalities are properly utilized. Therefore, employ-
ing a more delicate fusion method could be a promising fu-
ture work.

Recognizing Manipulation Actions from State-Transformations

Nachwa Aboubakr
Univ. Grenoble Alpes, Grenoble INP,

CNRS, Inria, LIG
nachwa.aboubakr@inria.fr

James L. Crowley
Univ. Grenoble Alpes, Grenoble INP,

CNRS, Inria, LIG
james.crowley@inria.fr

Remi Ronfard
Univ. Grenoble Alpes, Inria,
Grenoble INP, CNRS, LJK

remi.ronfard@inria.fr

Abstract

Manipulation actions transform objects from an initial

state into a final state. In this paper, we report on the use

of object state transitions as a mean for recognizing ma-

nipulation actions. Our method is inspired by the intuition

that object states are visually more apparent than actions

thus provide information that is complementary to spatio-

temporal action recognition. We start by defining a state

transition matrix that maps action verbs into a pre-state and

a post-state. We extract keyframes at regular intervals from

the video sequence and use these to recognize objects and

object states. Change in object state are then used to predict

action verbs. We report results on the EPIC kitchen action

recognition challenge.

1. Introduction
Most current approaches to action recognition interpret

a frame sequence as a spatio-temporal signal. However, ex-
tending a 2D convolutional network by adding a 3rd tempo-
ral dimension to the receptive field results in a substantial
increase in the number of parameters that must be learned,
greatly increasing the computational cost and the require-
ments for training data. An alternative approach is to de-
compose recognition into a static recognition phase using a
2D kernel followed by wither a 1D temporal kernel [19], or
a Recurrent Neural network [7]. Researchers have also ex-
plored the use of two-stream networks in which one stream
is used to analyze image appearance from RGB images
and the other represents motion from optical flow maps
[18, 14, 11]. such approaches provide spatio-temporal anal-
ysis while avoiding the very large increase in learned pa-
rameters.

An alternative to learning spatio-temporal models for
action recognition from video is to recognize changes in
properties of objects from a sequence of frames [13, 3].
Baradel et al. [3] proposed a convolutional model that is
trained to predict both object classes and action classes in
two branches. This model is followed by an object relation

Figure 1. Changes in object states over time for action recognition.
Two sample sequences from the EPIC kitchen dataset.

network that learns to reason over object interactions.
OUr approach is inspired by the human ability to recog-

nize changes in situation using a limited number of static
observations. Human associate observations with back-
ground knowledge in a form of previously seen episodes
or past experience [9, 4]. Thus a change in an object’s state
allows a human to form hypotheses about how the object
was changed. This ability allows a human subject to inter-
pret a complex scene from static images and make hypothe-
ses about unseen actions that may have occurred and could
explain changes to the scene. For example, we can under-
stand which action is shown in Figure 1 with 5 keyframes or
less from the video clip. Inferring the associated actions in
frame sequences is a relatively effortless task for a human,
while it remains challenging for machines [16]. We have
investigated whether such an approach can be used to infer
unseen actions from a set of frames which are chronologi-
cally ordered and contains semantic relations between ob-
jects. Such inference would complement hypotheses from
spatio-temporal action recognition.

A manipulation action transforms an object from a pre-
existing state (pre-state) into a new state (post-state). Thus
we can say that the action causes a change in the state of the
corresponding object. Alayrac et al. [2] have investigated
automatic discovery of both object states and actions from
videos. They treat this problem as a discriminative cluster-

1

Figure 2. Proposed architecture of learning action recognition as state transformations.

ing problem by exploiting the ordering of the frames. Their
work is promising, even though it has been evaluated on
only a small number of action classes.A related work [8],
studies visual changes of objects state between first and last
frames.

In this paper, we investigate the feasibility of recogniz-
ing object types and object states from a small number of
frames and then use changes in object states to predict ac-
tions. Our intuition is that 2D object types and states are are
easier to recogninze than spatio-temporal action verb.

2. Manipulation action as state transformation
An action, as defined in the Cambridge dictionary1, is the

effect something has on another thing. Many manipulation
actions can be expressed as triple in which a subject imparts
a change to an object. That is, a manipulation action ai 2 A
can be expressed as: the subject that performs the action, the
verb vi 2 V which describes the effect of the action, and the
object ni 2 N the effect is applied to. For egocentric data
such as EPIC kitchen the subject assumed to be the person.

The action recognition problem can be formulated with
one class for each possible combination of these elements.
For example, person cuts tomato and person cuts cucumber

can be considered as two different classes as in [17]. Some
recent datasets have provided a decomposition of an action
into a verb and one or more objects a = (v, (n1, .., nn))
[10, 5, 12]. This makes it possible to study the task of ac-
tion recognition as a composition of several sub-tasks (e.g.
object detection and action verb recognition).

2.1. State-changing actions
We are concerned with recognizing manipulation actions

that change the state of objects si 2 S. The state change can

1Cambridge University Press. (2019). Cambridge online dictionary,
Cambridge Dictionary online. Retrieved at April 3, 2019

appear in the object’s shape, its appearance (color), or its
location. Examples of object states include: closed, opened,
full, empty, whole, and cut.

We define a state transition function F that transforms
the corresponding object from a pre-state si into a post-
state sj . In some cases, this state transition can be defined
directly from the type of action verb vi. We observe that
sometimes a single verb is not enough to distinguish an ac-
tion. For example, the verb remove can mean open in re-

move lid and can mean peel in remove the skin of the garlic.
Therefore, the state transition must take into account both
action verbs and nouns.

Since the state changes happen as we move through time,
the transition function F returns a real value of each state
depending on the frame position in the video segment. As
in Figure 1 the object starts in its initial state that gradually
fades out and the post-state starts to appear as we advance in
the video. In our initial experiments we have assumed that
the state changing frame is the mid-frame of the video se-
quence. Therefore, we define the action transition mapping
function F (v, n), which takes the action’s verb v and a set
of objects (nouns) n and returns a continuous value of ob-
jects’ states for each frame depending on the frame position
in the video. For example, the action open fridge changes
the fridge state from opened to closed.

2.2. Architecture
In previous work [1], we investigated detection and lo-

cation of object types as well as object states from im-
ages. In this paper, we extend this work to learn changes
in object state from keyframes. The architecture of our
model is shown in Figure 2. Given a video segment, we
first split it into k sub-segments of equal length and sam-
ple a random keyframe from each sub-segment. For each
keyframe, we learn two concept classes (object types and
object states) separately. Then, from the selected sequence

Seen kitchens subset (S1) Unseen kitchens subset (S2)
Acc T1 Acc T5 Precision Recall Acc T1 Acc T5 Precision Recall

Action

Our model(RGB) 19.76 36.98 9.83 10.23 9.08 19.46 3.68 4.77
2SCNN[14](RGB) 13.67 33.25 6.66 5.47 6.79 20.42 3.39 3.01

TSN[18](RGB) 19.86 41.89 9.96 8.81 10.11 25.33 4.77 5.67
Verb

Our model(RGB) 47.41 81.33 31.20 20.43 34.35 69.24 15.09 11.00
2SCNN[14](RGB) 40.44 83.04 33.74 15.9 33.12 73.23 16.06 9.44

TSN[18](RGB) 45.68 85.56 61.64 23.81 34.89 74.56 19.48 11.22
Noun

Our model(RGB) 28.31 53.77 21.21 22.48 17.48 37.56 10.71 12.55
2SCNN[14](RGB) 30.46 57.05 28.23 23.23 17.58 40.46 11.97 12.53

TSN[18](RGB) 36.8 64.19 34.32 31.62 21.82 45.34 14.67 17.24
Table 1. Results on the EPIC kitchen dataset (Seen and Unseen subsets). Highest values are in bold. Results of baseline methods (2SCNN
and TSN) are reported by [5].

of k keyframes, we extract two channels using a point-wise
convolution from which we construct the state transition
matrix (pre-state, post-state). For object types (nouns), we
use a point-wise convolution to extract a vector of nouns
that appear in the video segment. Action verbs are then
learned from the state transition matrix. In the end, the ac-
tion classes are learned directly from the set of object types
and action verbs.

3. Experiment

EPIC Kitchen dataset. We jave investigated state trans-
formations using action labels using the egocentric videos
of people cooking and cleaning in the EPIC Kitchen dataset.
In this dataset, an action label is composed of a tuple of ai =
(verb vi, noun ni) extracted from a narrated text given for
each video action segment.

The EPIC verb represents the action verb while the EPIC
noun is the action object. As the EPIC Kitchen dataset
is an egocentric dataset which suggests one subject in the
scene, the action subject is always the cook’s hands. We
group each action verb depending on the type of effect they
cause into 3 different groups: those that change the object’s
shape, color appearance, or location. This study leaves
some non-state-changing verbs (like the verb check) out of
those groups as it does not change any object states. As a
result we define 49 state transitions and 31 different states.

Network Architecture. As shown in Figure 2, we use a
similar setting as in [1] for each keyframe. We start by ex-
tracting features using a VGG16 network with batch nor-
malization [15] pre-trained on the ImageNet dataset [6].

VGG features provide the input to a shared2 3 ⇥ 3 convo-
lutional layer. We separate the learning of object attributes
into two branches: one for object types and the other for
object states. Each attribute is learned with an independent
loss. VGG features are frozen during the training process
for object types and states.

For each keyframe, one noun vector and one state vec-
tor are extracted using Global Average Pooling over cor-
responding Class Activation Maps. Afterwards, we per-
form a point-wise convolution to extract one noun vec-
tor and the states transition matrix over keyframes. Verbs
are learned directly from the state transition matrix using
a fully-connected (FC) layer. Both action attributes (verb,
nouns) are fused using at a late stage a FC layer for action
classification. All hidden layers use the ReLU (rectified lin-
ear unit) activation function. A frame can have one or more
states and/or nouns. Therefore, we treat nouns and states
as multi-label classification problems that are learned with
a Mean Square Error (MSE). On the other hand, verbs and
actions are learned with a Cross Entropy (CE) function.

Training. We use EPIC Kitchen video segments for train-
ing our model. A clip is a collection of k randomly sampled
keyframes from k equal length sub-segments, and it repre-
sents the corresponding action video segment. This strat-
egy has been used in multiple works with similar problems
[18, 3]. We divide the EPIC videos in 80% for training and
20% for validation. Our validation set has only samples
from many-shot actions and all samples of few-shot actions
are in the our training split.

2shared over both attributes (object types and states)

tak
e

pu
t

op
en

clo
se

wa
sh

cu
t

m
ix

po
ur

pe
el Avg

Precision (%) 56.7 59.3 58.8 39.8 80.1 74.7 68.9 39.1 37.7 57.23
Recall (%) 48.2 45.0 62.9 57.1 67.7 60.7 50.2 40.3 53.5 53.96

Table 2. Model performance on validation set on state-changing verbs.

EPIC challenge evaluation. For evaluation, we aggre-
gate the results of 10 clips as in [3]. We report the same
evaluation metrics provided by the EPIC challenge [5]. Pro-
vided metrics include class-agnostic and class-aware met-
rics; Top-1 and Top-5 micro-accuracy in addition to preci-
sion and recall over only many shot classes (i.e. classes with
more that 100 samples).

Implementation details. For learning, we used MSE loss
to learn nouns and states during per-frame learning. Object
nouns in the Actions of EPIC dataset are used to define our
object classes. Each action of EPIC dataset is a tuple of a
verb and a noun. The noun is chosen to be the first noun
occurring in the narration sentence. Because sentences and
frames can contain multiple objects, we train to detect all
nouns in the sentence and treat this training step as a multi-
label recognition problem for each frame. Because object
state changes gradually, the state is represented as a contin-
uous number estimated using MSE.

In training, we used the Adam optimizer with a learning
rate of 1e�3 that decreases following the Reduce on Plateau
scheduling method. The implementation code is available3

and was written using Pytorch.

4. Discussion
Comparison with baselines. We report the results of our
model in Table 1 on EPIC Kitchen dataset for action recog-
nition task. As the test sets are not publicly available yet, we
compared our results to two baseline techniques, 2SCNN
model [14] and TSN model [18], as reported in [5].

In our model, we only use RGB channels. Our model has
20M parameters and only 5M trainable parameters which is
significantly lower than both baseline techniques i.e. for
each input modality: 2SCNN model [14] uses 170M train-
able parameters and TSN model [18] has 11M trainable pa-
rameters. Our model outperforms 2SCNN model [14] in
most of reported metrics and provides recognition of verbs
and actions that is comparable to TSN reported results[18].

State-changing Actions. In order to evaluate our model
on state-changing actions, we report results of our valida-
tion set in Table 2. The model is trained to learn state

3Code is available at https://github.com/Nachwa/object_
states

changes and shows better performance on state-changing
verbs than on verbs that are not state changes.

Our results show some confusion between semantically
similar verbs like (e.g. insert and put, or put and move to)
and verbs that have visually similar states (e.g. wash and fill
- where fill examples refers to filling water from a tap). Our
model is not designed to detect actions that do not result in
a change in object state (e.g. move and walk).

5. Conclusion
In this paper, we investigated a method for recogni-

tion of manipulation actions as changes of state of objects
in keyframes. We demonstrate that this can provide rea-
sonably accurate recognition of manipulation actions. We
reported results of our model on the challenge of EPIC
kitchen dataset and compare these to two baseline tech-
niques. For the action recognition task, our model outper-
forms one of the baseline techniques using 34 times less
training parameters, and achieved comparable results with
the other.

References
[1] Nachwa Aboubakr, Remi Ronfard, and James Crowley.

Recognition and localization of food in cooking videos. In
ACM International Conference Proceeding Series, 2018. 2,
3

[2] Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and Simon
Lacoste-Julien. Joint discovery of object states and manip-
ulation actions. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2127–2136, 2017. 1
[3] Fabien Baradel, Natalia Neverova, Christian Wolf, Julien

Mille, and Greg Mori. Object level visual reasoning in
videos. In ECCV, 2018. 1, 3, 4

[4] Samy Blusseau, A Carboni, A Maiche, Jean-Michel Morel,
and R Grompone von Gioi. A psychophysical evaluation of
the a contrario detection theory. In 2014 IEEE International

Conference on Image Processing (ICIP), pages 1091–1095.
IEEE, 2014. 1

[5] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
and Michael Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vi-

sion (ECCV), 2018. 2, 3, 4
[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

https://github.com/Nachwa/object_states
https://github.com/Nachwa/object_states

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 3
[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2625–2634, 2015. 1
[8] Alireza Fathi and James M Rehg. Modeling actions through

state changes. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2579–
2586, 2013. 2

[9] François Fleuret, Ting Li, Charles Dubout, Emma K
Wampler, Steven Yantis, and Donald Geman. Com-
paring machines and humans on a visual categorization
test. Proceedings of the National Academy of Sciences,
108(43):17621–17625, 2011. 1

[10] Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang,
and Song-Chun Zhu. Vrkitchen: an interactive 3d vir-
tual environment for task-oriented learning. arXiv preprint

arXiv:1903.05757, 2019. 2
[11] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,

and Cordelia Schmid. Joint learning of object and action
detectors. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4163–4172, 2017. 1
[12] Yin Li, Miao Liu, and James M Rehg. In the eye of beholder:

Joint learning of gaze and actions in first person video. In
Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 619–635, 2018. 2
[13] Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, Ghassan

AlRegib, and Hans Peter Graf. Attend and interact: Higher-
order object interactions for video understanding. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6790–6800, 2018. 1
[14] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–
576, 2014. 1, 3, 4

[15] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In-

ternational Conference on Learning Representations (ICRL),
2015. 3

[16] Sebastian Stabinger, Antonio Rodrı́guez-Sánchez, and Justus
Piater. 25 years of cnns: Can we compare to human abstrac-
tion capabilities? In International Conference on Artificial

Neural Networks, pages 380–387. Springer, 2016. 1
[17] Sebastian Stein and Stephen J McKenna. Combining em-

bedded accelerometers with computer vision for recognizing
food preparation activities. In Proceedings of the 2013 ACM

international joint conference on Pervasive and ubiquitous

computing, pages 729–738. ACM, 2013. 2
[18] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works: Towards good practices for deep action recognition.
In European conference on computer vision, pages 20–36.
Springer, 2016. 1, 3, 4

[19] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatio-temporal feature learning:

Speed-accuracy trade-offs in video classification. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 305–321, 2018. 1

EPIC-Kitchens Egocentric Action Anticipation and Recognition Challenges 2019
Team DMI-UNICT Technical Report

Antonino Furnari
University of Catania
furnari@dmi.unict.it

Giovanni Maria Farinella
University of Catania

gfarinella@dmi.unict.it

Abstract

This technical report describes Team DMI-UNICT ap-
proach to the EPIC-Kitchens Egocentric Action Anticipa-
tion and Egocentric Action Recognition Challenges 2019.
We developed Rolling-Unrolling LSTMs (RU-LSTMs), an
architecture able to anticipate actions at multiple tempo-
ral scales using two LSTMs to 1) summarize the past, and
2) formulate predictions about the future. The input video is
processed considering three complimentary modalities: ap-
pearance (RGB), motion (optical flow) and objects (object-
based features). Modality-specific predictions are fused us-
ing a novel Modality ATTention (MATT) mechanism which
learns to weigh modalities in an adaptive fashion. The pro-
posed approach can anticipate actions at multiple antici-
pation times ⌧a ranging from 0.25s to 2s. For the chal-
lenge, we consider the anticipations obtained at ⌧a = 1s.
We also adapted the proposed approach to tackle the ego-
centric action recognition task, reporting results for the
EPIC-Kitchens egocentric action recognition challenge as
well. Code and models will be released at the project page:
http://iplab.dmi.unict.it/rulstm.

1. Introduction

We observe that anticipation methods need to perform
two sub-tasks: 1) summarizing what has happened in the
past, up to the point of prediction, and 2) making hypotheses
on what will happen next, depending on what has already
been observed. While action anticipation methods generally
attempt to perform these tasks jointly [2, 4, 11], we propose
to disentangle the two responsibilities by using two separate
LSTMs. The first LSTM (“Rolling” LSTM) continuously
summarizes the semantic content of the streaming video.
The second LSTM (“Unrolling” LSTM) anticipates future
actions conditioned on the outputs of the rolling LSTM. The
proposed learning architecture is pre-trained using a novel
“sequence completion” pre-training technique, which en-
courages the disentanglement of the two responsibilities.

BEFORE THE ACTION
(observed)

"PUT-DOWN CONTAINER" ACTION
(unobserved)

ANTICIPATION TIME 𝜏𝑎
(unobserved)

MODEL
Top-3 anticipated actions

PUT-DOWN CONTAINER
CLOSE TAP

TAKE SPOON

𝜏𝑠:action start𝜏𝑠 − 𝜏𝑎𝜏𝑠 − (𝜏𝑜 + 𝜏𝑎)

PAST FRAMES (observed) FUTURE FRAMES (unobserved)

Figure 1. Egocentric action anticipation as defined in [1].

To leverage multimodal information, our model includes
an RGB, an optical flow and an object branch which pro-
cess the video independently. The predictions made by the
three branches are fused through a new “modality attention”
mechanism which adaptively chooses how to combine pre-
dictions related to the different modalities based on the ob-
served sample.

2. Proposed Approach
The proposed Rolling-Unrolling LSTM architecture

used for the challenge is described in detail in [3]. The
reader is referred to [3] for further details and discussion.
Processing Strategy As defined in [1] and illustrated
in Figure 1, egocentric action anticipation is defined as the
task of anticipating an action (e.g., “put-down container”)
by observing a video segment of length ⌧o preceding the
action by ⌧a seconds. Here ⌧a is referred to as the “antici-
pation time”, ⌧o is the “observation time”, and the starting
time of the action is denoted by ⌧s. Our approach general-
izes this definition by enabling predictions at multiple an-
ticipation times. Figure 2 illustrates the processing strategy
adopted by the proposed method. The video is processed

1

http://iplab.dmi.unict.it/rulstm

ACTION
(unobserved)

ANTICIPATION
(𝑺𝒂𝒏𝒕 time-steps)

ENCODING
(𝑺𝒆𝒏𝒄 time-steps)

7 8 9 10 11 12 13 14

𝛼
Input video of length 𝑙

𝜏𝑠𝜏𝑠 − 𝛼𝜏𝑠 − 𝑙 − 𝛼

1 2 3 4 5 6𝛼

observation time
(𝜏𝑜 = 2.75 for 𝛼 = 0.25)

time-steps

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6

EGOCENTRIC ACTION ANTICIPATION MODEL

𝑉7 𝑉8 𝑉9 𝑉10 𝑉11 𝑉12 𝑉13 𝑉14

𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14 anticipated action scores

video snippets

anticipation time
(𝜏𝑎 = 1𝑠 for 𝛼 = 0.25)

video

Figure 2. Video processing scheme of the proposed method with
Senc = 6 and Sant = 8.

in an on-line fashion, with a short video snippet Vt con-
sumed every ↵ seconds, where t indexes the current time-
step. Specifically, an action occurring at time ⌧s is antici-
pated by processing a video segment of length l starting at
time ⌧s � l� ↵ and ending at time ⌧s � ↵. The input video
ends at time ⌧s � ↵ as our method aims at anticipating ac-
tions at least ↵ seconds before they occur. The processing
is performed in two stages: an “encoding” stage, which is
carried out for Senc time-steps, and an “anticipation” stage,
which is carried out for Sant time-steps. In the encoding
stage, the model summarizes the semantic content of the
Senc input video snippets without producing any prediction,
whereas in the anticipation stage the model continues to en-
code the semantics of the Sant input video snippets and out-
puts Sant action scores st which can be used to perform ac-
tion anticipation. This scheme effectively allows to formu-
late Sant predictions for a single action at multiple anticipa-
tion times. In our experiments, we set ↵ = 0.25s, Senc = 6
and Sant = 8. In these settings, the model analyzes video
segments of length l = ↵(Senc + Sant) = 3.5s and
outputs 8 predictions at the following anticipation times:
⌧a 2 {2s, 1.75s, 1.5s, 1.25s, 1s, 0.75s, 0.5s, 0.25s}. For
the challenge, we report the anticipations predicted at time-
step t = 11. This way, our model anticipates actions with an
effective observation time equal to ⌧o = ↵·t = 2.75s and an
anticipation time equal to ⌧a = ↵(Sant+Senc+1�t) = 1s.

Rolling-Unrolling LSTM The proposed method uses two
separate LSTMs to encode past observations and formu-
late predictions about the future. Following previous lit-
erature [10], we include multiple identical branches which
analyze the video according to different modalities. Specif-
ically, at each time-step t, the input video snippet Vt is
represented using different modality-specific representation
functions '1, . . . ,'M depending on learnable parameters
✓'1 , . . . , ✓'M . This process allows to obtain the modality-
specific feature vectors f1,t = '1(Vt), . . . , fM,t =
'M (Vt), where M is the total number of modalities (i.e.,
the total number of branches in our architecture), and fm,t

is the feature vector computed at time-step t for the modal-
ity m. The feature vector fm,t is fed to the mth branch
of the architecture. While our model can easily incorpo-

𝑉1

𝑉2

𝑉3

𝑉4

𝑡 = 3

𝑡 = 3

𝑡 = 2

𝑡 = 1

AN
TI

CI
PA

TI
O

N
EN

C. R-LSTM

R-LSTM U-LSTM U-LSTM U-LSTM 𝑠𝑚,2
(𝜏𝑎 = 0.75𝑠)

R-LSTM U-LSTM U-LSTM 𝑠𝑚,3
(𝜏𝑎 = 0.5𝑠)

R-LSTM U-LSTM 𝑠𝑚,4
(𝜏𝑎 = 0.25𝑠)

L

L

L

Message passing

Linear transformationL

𝑉𝑡 Input video snippets

Figure 3. Example of RU modality-specific branch with Senc = 1
and Sant = 3.

rate different modalities, in this work we consider M = 3
modalities, i.e., RGB frames (spatial branch), optical flow
(motion branch) and object-based features (object branch).

Figure 3 illustrates the processing taking place in a single
branch m of the proposed RU-LSTM model. For illustra-
tion purposes only, the figure shows an example in which
Senc = 1 and Sant = 3. At time step t, the feature vector
fm,t is fed to the Rolling LSTM (R-LSTM), which encodes
its semantic content recursively, as follows:

(hR
m,t, c

R
m,t) = LSTM✓Rm

(fm,t, h
R
m,t�1, c

R
m,t�1) (1)

where LSTM✓R
m

denotes the R-LSTM of branch m, de-
pending on the learnable parameters ✓Rm, whereas hR

m,t and
cRm,t are the hidden and cell states computed at time t in
the modality m. The initial hidden and cell states of the
R-LSTM are initialized with zeros: hR

m,0 = 0, cRm,0 = 0.
In the anticipation stage, at time step t, the Unrolling

LSTM (U-LSTM) is used to make predictions about the fu-
ture. The U-LSTM takes over the hidden and cell vectors of
the R-LSTM at the current time-step (i.e., hR

m,t and cRm,t)
and iterates over the representation of the current video
snippet fm,t for a number of times nt equal to the number
of time-steps required to reach the beginning of the action,
i.e., nt = Sant+Senc� t+1. Hidden and cell states of the
U-LSTM are computed as follows at the jth iteration:

(hU
m,j , c

U
m,j) = LSTM✓Um

(fm,t, h
U
m,j�1, c

U
m,j�1) (2)

where LSTM✓U
m

is the U-LSTM of branch m, depending
on the learnable parameters ✓Um, and hU

m,t, cUm,t are the hid-
den and cell states computed at iteration j for the modality
m. The initial hidden and cell states of the U-LSTM are
initialized from the current hidden and cell states computed
by the R-LSTM: hU

m,0 = hR
m,t, cUm,0 = cRm,t. Note that

the input fm,t of the U-LSTM does not depend on j (see
eq. (2)) because it is fixed during the “unrolling” procedure.
The main rationale of “unrolling” the U-LSTM for a differ-
ent number of times at each time-step is to encourage it to
differentiate predictions at different anticipation times.

Modality-specific action scores sm,t are computed at
time-step t by processing the last hidden vector of the U-

LSTM with a linear transformation with learnable parame-
ters ✓Wm and ✓bm: sm,t = ✓Wm hU

m,nt
+ ✓bm.

Sequence Completion Pre-training (SCP) The two
LSTMs composing the RU architecture are designed to ad-
dress two specific sub-tasks: the R-LSTM is responsible for
encoding past observations and summarizing what has hap-
pened up to a given time-step, whereas the U-LSTM focuses
on anticipating future actions conditioned on the hidden and
cell vectors of the R-LSTM. To encourage the two LSTMs
to specialize on the two different sub-tasks, we propose to
train the architecture using a novel Sequence Completion
Pre-training (SCP) procedure. During SCP, the connections
of the U-LSTM are modified to allow it to process future
representations, rather than iterating on the current one. In
practice, the U-LSTM hidden and cell states are computed
as follows during SCP:

(hU
m,j , c

U
m,j) = LSTM✓Um

(fm,t+j�1, h
U
m,j�1, c

U
m,j�1) (3)

where the input representations fm,t+j�1 are sampled from
future time-steps t+j�1. The main goal of pre-training the
RU with SCP is to allow the R-LSTM to focus on summa-
rizing past representations without trying to anticipate the
future.

Modality ATTention (MATT) Coherently with past work
on egocentric action anticipation [1], we found it sub-
optimal to fuse multi-modal predictions with classic ap-
proaches such as early and late fusion. This is probably
due to the fact that, when anticipating egocentric actions,
one modality might be more useful than another (e.g., ap-
pearance over motion), depending on the processed sam-
ple. We introduce a Modality ATTention (MATT) module
which computes a set of attention scores indicating the rela-
tive importance of each modality for the final prediction. At
a given time-step t, such scores are obtained by processing
the concatenation of the hidden and cell vectors of the R-
LSTM networks belonging to all branches m = 1, . . . ,M
with a deep neural network D depending on the learnable
parameters ✓MATT :

�t = D✓MATT (�M
m=1(h

R
m,t � cRm,t)) (4)

where � denotes the concatenation operator and
�M

m=1(h
R
m,t � cUm,t) is the concatenation of the hid-

den and cell vectors produced by the R-LSTM at time-step
t across all modalities. Late fusion weights can be obtained
normalizing the score vector �t with the softmax function
in order to make sure that fusion weights sum to one:
wm,t = exp(�t,m)P

k exp(�t,k)
, where �t,m is the mth component

of the score vector �t. The final set of fusion weights is
obtained at time-step t by merging the modality-specific
predictions produced by the different branches with a linear
combination as follows: st =

P
m wm,t · sm,t. Figure 4

illustrates an example of a complete RU with two modal-
ities and the MATT fusion mechanism. For illustration
purposes, the figure shows only three anticipation steps.

3. Implementation and Training Details

Branches and Representation Functions We instantiate
the proposed architecture with 3 branches: a spatial branch
which processes RGB frames, a motion branch which pro-
cesses optical flow, and an object branch which processes
object-based features. Our architecture analyzes video snip-
pets of 5 frames Vt = {It,1, It,2, . . . , It,5}, where It,i is the
ith frame of the video snippet. The representation function
'1 of the spatial branch computes the feature vector f1,t by
extracting features from the last frame It,5 of the video snip-
pet using a Batch Normalized Inception CNN [8] trained for
action recognition. The representation function '2 of the
motion branch extracts optical flow from the 5 frames of the
current video snippet as proposed in [12]. The optical flow
is fed to a Batch Normalized Inception CNN trained for ac-
tion recognition to obtain the feature vector f2,t. Note that
'1 and '2 allow to obtain “action-centric” representations
of the input frame which can be used by the R-LSTM to
summarize what has happened in the past. The representa-
tion function '3 of the object branch extracts objects from
the last frame It,5 of the input snippet Vt using an object
detector. A fixed-length representation f3,t is obtained by
accumulating the confidence scores of all bounding boxes
predicted for each object class. Specifically, let bt,i be the
ith bounding box detected in image It,5, let bct,i be its class
and let bst,i be its detection confidence score. The jth com-
ponent of the output representation vector f3,t is obtained
by summing the confidence scores of all detected objects
of class j, i.e., f3,t,j =

P
i[b

c
t,i = j]bst,i, where [·] denotes

the Iverson bracket. This representation only encodes the
presence of an object in the scene, discarding its position in
the frame. We found this holistic representation to be suf-
ficient in the case of egocentric action anticipation. Differ-
ently from '1 and '2, '3 produces object-centric features,
which carry information on what objects are present in the
scene and hence could be interacted next.

Architectural Details of RU-LSTM and MATT We
use a Batch Normalized Inception CNN [8] (BNIncep-
tion) in the spatial and flow branches and consider the
1024-dimensional vectors produced by the last global av-
erage pooling layer of the network as output representa-
tions. Optical flows are extracted using the TVL1 algo-
rithm [13]. Specifically, we used the pre-computed optical
flows provided along with EPIC-KITCHENS (see http:
//epic-kitchens.github.io/). At test time, the
CNNs are fed with input images and optical flows resized
to 456⇥ 256 pixels. Note that, due to global average pool-
ing, the output of the BNInception CNN will be a 1024 fea-

http://epic-kitchens.github.io/
http://epic-kitchens.github.io/

R-LSTM U-LSTM U-LSTM U-LSTM 𝑠1,1
(𝜏𝑎 = 0.75𝑠)

𝑉1

R-LSTM U-LSTM U-LSTM U-LSTM 𝑠2,1
(𝜏𝑎 = 0.75𝑠)

×
×

+ 𝑠1
(𝜏𝑎 = 0.75𝑠)

𝑤1,1
𝑤2,1

S

Modality Attention
Network (MATT)

𝑤1,𝑡
𝑤2,𝑡

S SoftMaxS

𝑡 = 1

L

L

Message passing
Linear transformationL𝑉𝑡 Input video snippets

R-LSTM U-LSTM U-LSTM 𝑠1,2
(𝜏𝑎 = 0.5𝑠)

𝑉2

R-LSTM U-LSTM U-LSTM 𝑠2,2
(𝜏𝑎 = 0.5𝑠)

×
×

+ 𝑠2
(𝜏𝑎 = 0.5𝑠)

𝑤1,2
𝑤2,2

S

𝑡 = 2

L

L

R-LSTM U-LSTM 𝑠1,3
(𝜏𝑎 = 0.25𝑠)

𝑉3

R-LSTM U-LSTM 𝑠2,3
(𝜏𝑎 = 0.25𝑠)

×
×

+ 𝑠3
(𝜏𝑎 = 0.25𝑠)

𝑤1,3
𝑤2,3

S

𝑡 = 3

L

L

Figure 4. Example of the complete RU architecture with two modalities and the Modality ATTention mechanism (MATT).

ture vector regardless the size of the input image. We found
this setting leading to better performance as compared to
extracting a 224 ⇥ 224 crop from the center of the image.
For the object branch, we use a Faster R-CNN object detec-
tor [5] with a ResNet-101 backbone [7], as implemented
in [6]. Both the Rolling LSTM (R-LSTM) and the Un-
rolling LSTM (U-LSTM) contain a single layer with 1024
hidden units. Dropout with p = 0.8 is applied to the input
of each LSTM and to the input of the final fully connected
layer used to obtain class scores. The Modality ATTention
network (MATT) is a feed-forward network with three fully
connected layers containing respectively h/4, h/8 and 3
hidden units, where h = 6144 is the dimension of the in-
put to the attention network (i.e., the concatenation of the
hidden and cell states of 1024 units each related to the three
R-LSTMs). Dropout with p = 0.8 is applied to the input of
the second and third layers of the attention network to avoid
over-fitting. The ReLU activation function are used within
the attention network.

Architectural Details of RU-LSTM and MATT While
the proposed architecture could be in principle trained in
an end-to-end fashion, we found it extremely challenging
to avoid over-fitting during end-to-end training. This is
mainly due to the indirect relationship between input video

and future actions. Indeed, differently from action recog-
nition, where the objects and actions to be recognized are
present or take place in the input video, in the case of ac-
tion anticipation, the system should be able to anticipate
objects and actions which do not always appear in the input
video, which makes it hard to learn good representations
end-to-end. To avoid over-fitting, the proposed architec-
ture is trained as follows. First, we independently train the
spatial and motion CNNs for the task of egocentric action
recognition within the framework of TSN [12]. Specifically,
we set the number of segments to 3 and train the TSN mod-
els with Stochastic Gradient Descent (SGD) using standard
cross entropy for 160 epochs with an initial learning rate
equal to 0.001, which is decreased by a factor of 10 after
80 epochs. We use a mini-batch size of 64 samples to train
each CNN on a single Titan X. For all other parameters, we
use the values recommended in [12]. We train the object
detector to recognize the 352 object classes of the EPIC-
KITCHENS dataset. The object detector has been trained
on two Tesla V100 for 504531 iterations, with an initial
learning rate of 0.005, which has been decreased by a fac-
tor of 10 after 336354 and 454077 steps. More details are
available at our project web page (http://iplab.dmi.
unict.it/rulstm). This training procedure allows to

http://iplab.dmi.unict.it/rulstm
http://iplab.dmi.unict.it/rulstm

Top-1 Accuracy% Top-5 Accuracy% Avg Class Precision% Avg Class Recall%
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

Single 33.04 22.78 14.39 79.55 50.95 33.73 25.50 24.12 07.37 15.73 19.81 07.66
Ensemble 31.13 22.93 15.25 78.03 51.05 35.13 22.58 24.26 08.41 17.71 20.05 08.05

S2

Single 27.01 15.19 08.16 69.55 34.38 21.10 13.69 09.87 03.64 09.21 11.97 04.83
Ensemble 26.63 15.47 09.12 68.11 35.27 21.88 16.58 09.93 03.16 11.08 11.70 04.55

Table 1. EPIC-Kitchens egocentric action anticipation results.

Top-1 Accuracy% Top-5 Accuracy% Avg Class Precision% Avg Class Recall%
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

Single 56.93 45.03 33.06 85.68 67.12 55.32 50.42 39.84 18.91 38.82 38.11 19.12
Ensemble 58.99 45.00 35.14 86.70 69.08 57.62 52.23 40.06 19.40 42.12 39.32 20.28

S2

Single 43.67 26.77 19.49 73.30 48.28 37.15 23.40 20.82 09.72 18.41 21.59 13.33
Ensemble 47.35 28.64 21.37 73.75 51.01 39.47 26.88 22.09 10.53 22.12 23.31 13.98

Table 2. EPIC-Kitchens egocentric action recognition results.

learn the parameters ✓1, ✓2 and ✓3 of the representation
functions related to the three modalities (i.e., RGB, Flow,
OBJ). After this procedure, these parameters are fixed and
they are no more optimized. For efficiency, we pre-compute
representations over the whole dataset.

Each branch of the RU-LSTM is training with SGD us-
ing the cross entropy loss with a fixed learning rate equal
to 0.01 and momentum equal to 0.9. Each branch is first
pre-trained with Sequence Completion Pre-training (SCP).
Specifically, appearance and motion branches are trained
for 100 epochs, whereas the object branch is trained for 200
epochs. Branches are then fine-tuned for the action antici-
pation task. Once each branch has been trained, the com-
plete architecture with three branches is assembled to form
a three-branch network with MATT and the model is further
fine-tuned for 100 epochs using cross entropy and the same
learning parameters.

Note that, in order to improve performances, we apply
early stopping at each training stage. This is done by choos-
ing the iterations of the intermediate and final models which
obtain the best Top-5 action anticipation accuracy for the
anticipation time ⌧a = 1s on the validation set. In the
case of action recognition, we choose the epoch obtaining
the best average Top-1 action accuracy across observation
rates. The proposed RU-LSTM architecture has been imple-
mented using the PyTorch library [9]. The code is available
at http://iplab.dmi.unict.it/rulstm.

Ensemble The egocentric action anticipation scores sub-
mitted for the challenge have been obtained by an ensemble
of two methods using respectively a BNInception [8] and
a ResNet-101 [7] backbone. The two models have been
trained independently and the results have been fused by
late fusion.

4. Adaptation for the Task of Egocentric Ac-
tion Recognition

We tested our approach on the task of egocentric action
recognition as well. To this aim, we adapted our model
to process 8 frames, evenly sampled from the input video.
The network is trained to recognize the action as soon as
possible applying cross entropy to the predictions obtained
in the 8 time-steps. For the egocentric action recognition
challenge, we consider the output obtained at the 8th time-
step, i.e. when 100% of the video has been observed.
We train four branches: a spatial branch processing RGB
frames, a motion branch processing optical flow, an object
branch processing object-centric representation, and an au-
dio branch processing spectrograms. Branch-specific pre-
dictions are fused by late fusion (i.e., MATT is not used in
this case).

Audio Processing The audio branch processes spectro-
grams extracted from the audio track of the input video.
Specifically, we computed spectrograms over temporal
windows of 1 second. Spectrograms are extracted at
30 fps, which allows to obtain overlap within the audio
content of each temporal window. To compute spectro-
grams, we use the librosa.feature.melspectrogram function
from the librosa library (https://librosa.github.
io/librosa/generated/librosa.feature.
melspectrogram.html), specifying 128 Mel bands
and sr

128 samples between successive frames (“hop length”
parameter), where sr is the sampling rate of the audio
track. This allows to obtain spectrograms of size 128⇥128,
which are encoded as grayscale images. The spectrograms
are processed by a BNInception network truncated to the
penultimate inception block, which is trained for egocentric
action recognition with TSN.

Ensemble For the challenge, we trained an ensemble of
models, including a spatial branch based on BNInception, a

http://iplab.dmi.unict.it/rulstm
https://librosa.github.io/librosa/generated/librosa.feature.melspectrogram.html
https://librosa.github.io/librosa/generated/librosa.feature.melspectrogram.html
https://librosa.github.io/librosa/generated/librosa.feature.melspectrogram.html

spatial branch based on ResNet-101, a motion branch based
on BNInception, a motion branch based on ResNet-101, an
audio branch based on BNInception and the object branch.

5. Results
Table 1 reports the results of the proposed approach on

the EPIC-Kitchens egocentric action anticipation challenge.
While we participate in the challenge using our Ensemble
model, the performances of the single model using a BNIn-
ception backbone are reported for reference.

Table 2 reports the results of the proposed approach on
the EPIC-Kitchens egocentric action recognition challenge.
Similarly to the anticipation results, the proposed ensemble
model is compared with respect to a single model based on
a BNInception backbone using a spatial branch, a motion
branch and an object branch.

References
[1] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A.

Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W.
Price, and M. Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vi-
sion, pages 720–736, 2018. 1, 3

[2] A. Furnari, S. Battiato, and G. M. Farinella. Leveraging un-
certainty to rethink loss functions and evaluation measures
for egocentric action anticipation. In European Conference
on Computer Vision Workshops, 2018. 1

[3] Antonino Furnari and Giovanni Maria Farinella. What would
you expect? anticipating egocentric actions with rolling-
unrolling lstms and modality attention. International Con-
ference on Computer Vision, 2019. 1

[4] Y. Gao, Z. Yang, and R. Nevatia. RED: Reinforced encoder-
decoder networks for action anticipation. British Machine
Vision Conference, 2017. 1

[5] Ross Girshick. Fast R-CNN. In International Conference on
Computer Vision, pages 1440–1448, 2015. 4

[6] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr
Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 4

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition, pages 770–778, 2016. 4, 5

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on International Conference on
Machine Learning, pages 448–456, 2015. 3, 5

[9] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[10] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances
in neural information processing systems, pages 568–576,
2014. 2

[11] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating
visual representations from unlabeled video. In Computer
Vision and Pattern Recognition, pages 98–106, 2016. 1

[12] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks: Towards good
practices for deep action recognition. In European Confer-
ence on Computer Vision, pages 20–36, 2016. 3, 4

[13] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l 1 optical flow. In Joint Pattern Recognition
Symposium, pages 214–223, 2007. 3

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

RML-Ryerson University Submission to EPIC-Kitchen Action Anticipation
Challenge (ActivityNet 2019)

Nour Eldin Elmadany, Yifeng He, Ling Guan
Ryerson Multimedia Laboratory

Department of Electrical and Computer Engineering, Ryerson University, Toronto.
noureldin.elmadany@ryerson.ca

Abstract

In this paper, we introduce our submission for task c ego-

centric activity understanding (EPIC-KITCHENs) Action

Anticipation for Activitynet Challenge 2019. [3]. The pro-

posed model is based on Multi-Fiber Network [2] and non-

local neural network [8]. The presented model is based only

on the RGB cue and the final submission achieves 13.20 %
for Seen Kitchens (S1) and 8.5 % for Unseen Kitchens (S2).

1. Introduction
Activity Recognition in videos drawn researchers’ atten-

tion in recent years. The research community introduced
several third-person benchmark datasets including Activi-
tyNet [4] and Kinetics [1]. Other researchers focused on
first-person action recognition. However, the size of the
first-person datasets are relatively smaller than the third-
person datasets. Recently, EPIC-Kitchens dataset was in-
troduced as a large scale first-person action recognition
dataset. This dataset features the interactions between a
first-person and kitchen-wares and appliances. It shows the
multi-task learning including washing a few dishes. To rec-
ognize actions, verbs, and objects in videos, recent tech-
niques were developed based on Deep ConvNets and raised
the bar of state-of-the-art results. To address the chal-
lenge, we presented the Non-Local Multi-Fiber Network
(NL-MFN) achieving 13.20 % for Seen Kitchens (S1) and
8.5 % for Unseen Kitchens (S2).

2. The Non-Local Multi-fiber Network
2.1. Multi-Fiber Network

The proposed network is based on Multi-Fiber Network
[2] which aims to reduce the computational cost of the 3D
Deep ConvNets. It slices the network into an ensemble of
lightweight networks so called fibers. Multi-Fiber Network

is based the ResNets [5] and targets reducing the computa-
tional cost, by slicing the residual unit into N parallel iso-
lated paths named fibers. Further, features are routed and
multiplexed using a multiplexer. The multiplexer aims to
learn the interactions across different fibers and re-distribute
the features again among different fibers as illustrated in fig-
ure 1. Before each layer, batch normalization and ReLU
non-linearity are used. The whole network is shown in fig-
ure 2(a).

2.2. Non-Local Neural Network

Non-Local Neural Network [8] extracts the long-term
temporal information which has demonstrated the effective-
ness of non-local operation in different applications. The
non-local module is defined as follows:

yi =
X

f(xi, xj)g(xj) (1)

where i and j are the index of an output position in time or
space. x is the input tensor representing video and y is the
output representation. f represents the relation between the
positions i and j. Here f(xi, xj) is gaussian and is com-
puted as follows:

f(xi, xj) = ex
T
i xj (2)

where xT
i xj is dot-product similarity.

2.3. The Proposed Network

According to [2], Multi-Fiber Network achieved the
state-of-the-art in video recognition with less computional
cost which we also found emprically. However, Multi-Fiber
Network focuses only on local neighborhood. Non-local
module [8] is adopted to lend the network is the ability of
capturing long term temporal information needed for ac-
tion anticipation. In Non-Local Multi-Fiber Network (NL-
MFN), non-local module is plugged in after the four multi-
fiber modules as shown in figure 2(b).

1

Figure 1. The architecture of the multi-fiber module. The multi-
plexer gathers the feature maps and re-distribute the feature maps
using 2 1x1 convolution layer as in [2]

(a) The Multi-
Fiber Network.

(b) The proposed
Non-Local Multi-
Fiber Network.
(NL-MFN)

Figure 2. The network architecture used for video action anticipa-
tion.

3. Experiments on Action Anticipation Chal-
lenge

Action Anticipation is the ability of foreseeing the up-
coming action. Given a video segment Ai = [tsi � to �
ta, tei�ta] where tsi and tei are the start and the end time of
segment, ta is the acticipation time and equals to 1 sec, and
to is the observation time, the action class Ca is anticipated.
Following [3], the video should be anticipated by only ob-
serving the preceding action time by ⌧a = 1 sec. As in [3],
we feed the network with video segments preceding anno-
tated actions and train it to predict the labels. According
to [3], the dataset is imbalanced dataset where it includes
many, few, and zero shots classes. So, focal loss [6] was
adopted as a loss function which is defined as follows:

FL(pt) = �(1� pt)
� log(pt) (3)

where � is set empirically to 2 as in [6]. As the task is
to anticipate the action, however the annotation is in terms
of verbs and nouns. Multi-task loss is adopted for training
the network where three losses are set for training including
verbs, nouns, and actions. The dataset includes 125 verbs
and 352 nouns. Moreover, the number of actions is 2513
and is computed from the unique verb and noun annotation
tuples of the training dataset only.

3.1. Experiments
In our submission, RGB modality is used only. First, a

Multi-Fiber Network is trained by fine tuning a pre-trained
model on Kinetics [1] and UCF101 [7] using Pytorch. The
training using a single Nvidia Titan Xp with a batch size
of 8 for 30 epochs with initial learning rate of 0.01 and is
dropped by 1

10 every 10 epochs. The network weights are
used as initialization for the NL-MFN except for non-local
module and the fully connected layers. The NL-MFN is fur-
ther finetuned for 25 epochs with a learning rate of 0.01 and
is dropped by 1

10 every 10 epochs. The results are shown in
Table 1 as appeared on the leaderboard securing the second
place.

Acknowledgment
We would like to thank NVIDIA for supporting our Re-

search with TITAN Xp GPU.

References
[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6299–6308, 2017. 1, 2
[2] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan,

and Jiashi Feng. Multi-fiber networks for video recognition.
In European Conference on Computer Vision (ECCV), 2018.
1, 2

[3] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Scaling egocentric vision: The dataset. In
Computer Vision - ECCV 2018 - 15th European Conference,

Munich, Germany, September 8-14, 2018, Proceedings, Part

IV, pages 753–771, 2018. 1, 2
[4] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and

Juan Carlos Niebles. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 961–970, 2015. 1
[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016. 1
[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Proceed-

Table 1. Experiments on EPIC-Kitchens Action Anticipations.
Dataset Verb (Top 1) Noun (Top 1) Action (Top 1) Verb (Top 5) Noun (Top 5) Action (Top 5) Verb (Prec.) Noun (Prec.) Action (Prec.) Verb (Rec.) Noun (Rec.) Action (Rec.)

Seen Kitchens (S1) 34.40% 23.36% 13.20% 79.07% 45.57% 31.08% 26.36% 21.81% 5.28% 19.47% 20.01% 5.20%
Unseen Kitchens (S2) 27.89% 15.53% 8.50% 70.47% 34.28% 20.38% 17.77% 12.32% 3.28% 9.35% 12.11% 3.84%

ings of the IEEE international conference on computer vision,
pages 2980–2988, 2017. 2

[7] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. CoRR, abs/1212.0402, 2012. 2

[8] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming
He. Non-local neural networks. CVPR, 2018. 1

Leveraging the Present to Anticipate the Future in Videos

Antoine Miech1,2 Ivan Laptev1,2 Josef Sivic1,2,3 Heng Wang4 Lorenzo Torresani4 Du Tran4

1Inria 2École Normale Supérieure 3CIIRC 4Facebook AI

Abstract

Anticipating actions before they are executed is crucial
for a wide range of practical applications including au-
tonomous driving and robotics. While most prior work in
this area requires partial observation of executed actions,
in the paper we focus on anticipating actions seconds be-
fore they start. Our proposed approach is the fusion of
a purely anticipatory model with a complementary model
constrained to reason about the present. In particular, the
latter predicts present action and scene attributes, and rea-
sons about how they evolve over time. By doing so, we
aim at modeling action anticipation at a more conceptual
level than directly predicting future actions. Our model
outperforms previously reported methods on the EPIC-
KITCHENS. Note that this challenge technical report is an
extract from [17].

1. Introduction
Automatic video understanding has improved signifi-

cantly over the last few years. Such advances have mani-
fested in disparate video understanding tasks, including ac-
tion recognition [2, 5, 7, 22, 24], temporal action localiza-
tion [21, 23, 28, 29], video search [8], video summariza-
tion [18] and video categorization [16]. In this work, we fo-
cus on the problem of anticipating future actions in videos
as illustrated in Figure 1.

A significant amount of prior work [2, 5, 7, 12, 13, 22,
24, 25, 27] in automatic video understanding has focused
on the task of action recognition. The goal of action recog-
nition is to recognize what action is being performed in a
given video. While accurate recognition is crucial for a
wide range of practical applications such as video catego-
rization or automatic video filtering, certain settings do not
allow for complete and even partial observation of action
before it happens. For instance, an autonomous car should
be able to recognize the intent of a pedestrian to cross the
road much before the action is actually initiated in order to
avoid an accident. In practical applications where we seek
to act before an action gets executed, being able to antici-
pate the future given the present is critical.

FutureObserved Video

Future action to anticipate:
 Long Jump

Future action to anticipate:
Crossing Road

Figure 1: Action anticipation. Examples of action antic-
ipation in which the goal is to anticipate future actions in
videos seconds before they are performed.

Anticipating the future, especially long-term, is a chal-
lenging task because the future is not deterministic: several
outcomes are possible given the current observation. To re-
duce uncertainty, most work in this field [1, 9, 10, 14, 19,
20] requires partially observed execution of actions. In this
paper, we address the task of action anticipation even when
no partial observation of the action is available. While prior
work [4, 11, 15, 26] has addressed this same task, in this
work, we specifically focus on better leveraging recognition
models to improve future action prediction. We propose a
fusion of two approaches: one directly anticipates the future
while the other first recognizes the present and then antici-
pates the future, given the present.

1.1. Contributions
The contributions of our work are: (i) We propose a

new framework for the task of anticipating human actions
several seconds before they are performed. Our model is
decomposed into two complementary models. The first,
named the predictive model, anticipates action directly from
the visual inputs. The second one, the transitional model,
is first constrained to predict what is happening in the ob-
served time interval and then leverages this prediction to
anticipate the future actions. (ii) We present extensive ex-

Video timeline

Future
action

Present

T sec

FuturePast

CNN
Feature
extraction

Anticipated Action
Pour Courgette

onto Pan

Figure 2: Overview of our approach. Our task is to pre-
dict an action T seconds before it starts to be performed.
Our model is a combination of two complementary mod-
ules: the predictive model and the transitional model. While
the predictive model directly anticipates the future action,
the transitional model is first constrained to output what is
currently happening. Then, it uses this information to antic-
ipate future actions.

periments on the EPIC-KITCHENS [3] dataset with state-
of-the-art results.

2. Action Anticipation Model
Our goal is to anticipate an action T seconds before it

starts. More formally, let V denote a video. Then we indi-
cate with Va:b the segment of V starting at time a and end-
ing at time b, and with yc the label of the action that starts at
time c . We would like to find a function f such that f(V0:t)
predicts yt+T . The main idea behind our model is that we
decompose f as a weighted average of two functions, a pre-
dictive model fpred and a transitional model ftrans:

f = ↵fpred + (1� ↵)ftrans, ↵ 2 [0, 1], (1)

where ↵ is a dataset dependent hyper-parameter chosen
by validation. The first function fpred is trained to predict
the future action directly from the observed segment. On
the other hand, ftrans is first constrained to compute high-
level properties of the observed segment (e.g., attributes or
the action performed in the present). Then, in a second
stage, ftrans uses this information to anticipate the future
action. In the next subsections we explain how to learn
fpred and ftrans. Figure 2 presents an overview of the pro-
posed model.

2.1. Predictive model fpred
The goal of the predictive model fpred is to directly an-

ticipate future action from the visual input. As opposed

Action state s

Action Recognition based transitional model

Dicing Courgette
Cutting Courgette
Washing Courgette

…
Open Fridge

Markov
Transition
Matrix

Observed video CNN

Anticipated
Action:

Pour Courgette
onto Pan

M

Figure 3: Illustration of the transitional model. Our Ac-
tion Recognition (AR) based transitional model learns to
prediction future actions based on the predictions of an ac-
tion recognition classifier applied on current/present frames
(clips).

to ftrans, fpred is not subject to any specific constraint.
Suppose that we are provided with a training video V with
action labels yt0+T , . . . , ytn+T . For each label yti+T , we
want to minimize the loss:

l(fpred(Vs(ti):ti), yti+T), (2)

where s(ti) = max(0, ti�tpred), l is the cross entropy loss,
tpred is a dataset dependent hyper-parameter, also chosen
by validation, that represents the maximum temporal inter-
val of a video fpred has access to. This hyper-parameter is
essential because looking too much in the past may add ir-
relevant information that degrades prediction performance.
This loss is then summed up over all videos from the train-
ing dataset. In this work, fpred is a linear model which takes
as input a video descriptor which we describe in section 3.3.

2.2. Transitional model ftrans
The transitional model ftrans splits the prediction into

two stages: gs and gt. The first stage gs aims at recog-
nizing a current state s, describing the observed video seg-
ment. The state s can represent an action or a latent action-
attribute. The second stage gt takes as input the current state
s, and anticipates the next action given the current state s.
gs can be thought of as a complex function extracting high-
level information from the observed video segment, while
gt is a simple (in fact, linear) function operating on the state
s and modeling the correlation between the present state and
the future action. We will next explain in detail how we
define the current state s and how we model the transition
function gt.

Transitional Model based on Action Recognition.
Real-world videos often consist of a sequence of elementary
actions performed by a person in order to reach a final goal
such as Preparing coffee, Changing car tire or Assembling
a chair. Many datasets come with a training set where each
video has been annotated with action labels and segment
boundaries for all occurring actions (e.g EPIC-KITCHENS,

Breakfast). When this is available we can use action labels
instead of predefined visual attributes for state s. The in-
tuition behind our claim is the fact that the anticipation of
the next action significantly depends on the present being-
performed action. In other words, we make a Markov as-
sumption on the sequence of performed actions. More for-
mally, suppose we are provided with an ordered sequence
of action annotations (a0, . . . , aN) 2 {1, . . . ,K}N for a
given video, where an defines the action class performed in
video segment Vn. We propose to model P (an+1 = i|Vn)
as follows:

P (an+1 = i|Vn) =
KX

j=1

P (an+1 = i| an = j)P (an = j|Vn)

(3)

8n 2 {0, . . . , N � 1}, i 2 {1, . . . ,K}. This reformulation
decomposes the computation of P (an+1 = i|Vn) in terms
of two factors: 1) an action recognition model gs(Vn) that
predicts P (an = j|Vn), i.e., the action being performed in
the present; 2) a transition matrix M that captures the statis-
tical correlation between the present and the future action,
i.e., such that Mij ⇡ P (an+1 = i| an = j). In this sce-
nario, gt takes as input the probability scores of each action
given by gs to anticipate the next action in a probabilistic
manner:

gt(s) = Ms, (4)

P (an+1 = i) =
KX

j=1

Mi,jsj = [gt(s)]i . (5)

In practice, we compute M by estimating the conditional
probabilities between present and future actions from the
the sequences of action annotations in the training set. Fig-
ure 3 illustrates this model.

3. Experiments
In this section, we evaluate our approach on the EPIC-

KITCHENS dataset.

3.1. EPIC-KITCHENS Datasets
EPIC-KITCHENS [3] is a large-scale cooking video

dataset containing 39,594 accurate temporal segment ac-
tion annotations. Each video is composed of a sequence
of temporal segment annotations. Three different tasks are
proposed together with the dataset: object detection, action
recognition and action anticipation. The action anticipation
task is to predict an action one second before it has started.
The dataset contains three different splits: the training set,
the seen kitchens test set (S1) composed of videos from
kitchens also appearing in the training set and finally the un-
seen kitchens test set (S2) with kitchens that are not appear-
ing in the training set. A publicly available challenge is also

Model Pretrain Fine-tune Action Verb Noun

ResNet-50 Imagenet No 3.4 24.5 7.4
R(2+1)D-18 Kinetics No 5.2 27.2 10.3
R(2+1)D-18 Kinetics EK-Anticip. 5.0 24.6 9.7
R(2+1)D-18 Kinetics EK-Recogn. 6.0 27.6 11.6

Table 1: Effects of pre-training. Action anticipation top-1 per
clip accuracy on EPIC-KITCHENS with different models and pre-
training datasets.

organized to keep track of the best performing approach on
this anticipation task. Because of this public challenge, the
labels of S1 and S2 test sets are not available. Thus, most
of our results are reported on our validation set composed
of the following kitchens: P03, P14, P23 and P30. We also
report results evaluated by the challenge organizers on the
held-out test set. Unless specified otherwise, for compari-
son purposes, we report experiments with T = 1 sec.

3.2. Action label space
As opposed to [3] where the action labels are predicted

by first predicting the verbs and nouns separately, we di-
rectly predict the cartesian action label space by considering
the combination of (verb, action) that only appear at train-
ing (roughly 3k actions).

3.3. Video Representation
In this subsection we discuss how we represent the ob-

served video segment V to perform action prediction. Our
overall strategy is to split the video into clips, extract clips
representation and perform pooling over these clips. Given
an input video segment V , we uniformly split it into small
clips V = [V1, . . . , VN] where each clip Vi, i 2 [1, N] is
short enough (e.g. 8 or 16 frames) that it can be fed into a
pretrained video CNN C. From the penultimate layer of the
CNN we extract an L2-normalized one-dimensional repre-
sentation C(Vi) for each clip Vi. Then we perform a tempo-
ral aggregation Agg([C(V1), . . . , C(VN)]) of the extracted
features in order to get a one-dimensional video representa-
tion for V . In our experiments, C is the R(2+1)D network
of 18-layers from Tran et al. [24]. We perform a simple
max pooling to aggregate features from all clips, but more
sophisticated temporal aggregation techniques [16] can also
be used in our model.

Leveraging the present for pretraining. In previous
work [3, 26] the video representation was learned by fine-
tuning a pretrained video CNN on the task of action an-
ticipation. Instead, we propose to finetune the CNN rep-
resentation on the task of action recognition on the target
dataset. More specifically, instead of training the CNN on
video clips sampled before action starts, we train it on clips

Action Verb Noun
A@1 A@5 A@1 A@5 A@1 A@5

Transitional 5.1 17.1 25.2 72.0 12.1 33.2
Predictive 6.3 17.3 27.4 73.1 11.9 31.5
Predictive + Transitional 6.7 19.1 27.3 73.5 12.9 34.6
Transitional (with GT) 16.1 29.4 29.3 63.3 30.7 44.4
Action recognition 12.1 30.0 39.3 80.0 23.1 49.3

Table 2: Transitional and predictive model ablation. Transi-
tional model and predictive model ablation study on our EPIC-
KITCHENS validation set with T = 1 sec. Grey rows should be
interpreted as accuracies upper bounds.

sampled in the action segment interval. This is motivated by
the fact that the task of action recognition is “easier’ than ac-
tion anticipation and thus it may lead to better feature learn-
ing. Table 1 reports accuracies on the EPIC-KITCHENS
validation set obtained with our predictive model applied to
different CNN representations. These results illustrate the
benefit of fine-tuning the CNN on action recognition, in-
stead of action anticipation as done in prior work [3, 26].
The Table provide also numbers for two additional base-
lines corresponding to 1) using the CNN pretrained on Ki-
netics without finetuning and 2) extracting features from
a ResNet-50 2D CNN pretrained on Imagenet. It can be
noted that the best accuracies for actions, verbs and nouns
are obtained with the CNN finetuned on the action recog-
nition task of EPIC-KITCHENS. Based on these results, in
the rest of the work, we use CNN features computed from
a R(2+1)D-18 first pretrained on Kinetics [2] and then fine-
tuned for action recognition on the target dataset.

3.4. Ablation study

In order to understand the benefits of the different com-
ponents in our model, we evaluate the predictive model
separately from the transitional model. Table 2 summa-
rizes the results achieved on the validation set of EPIC-
KITCHENS [3]. Interestingly, combining the predictive
model with the transitional models yields further accuracy
gains. This suggests that the predictions are complemen-
tary.

We also show in grey, an accuracy upper bound achieved
when directly recognizing the future frame as opposed to
predicting from the past one (row Action recognition). The
grey row Transitional (AR with GT) experiments shows the
accuracy achieved when the transitional model is provided
the groundtruth label of the last observed action. The im-
provement when using the groundtruth label is significant.
This suggests that a large cause of missing performance
is weak action recognition models and that better action
recognition will produce stronger results for prediction.

3.5. Comparison to the state-of-the-art

We compare our approach to the state-of-the-art on the
EPIC-KITCHENS dataset. Table 3 reports results obtained
from the EPIC-KITCHENS unseen kitchens action antici-
pation challenge submission server. Note that our EPIC-
KITCHENS submission is done under the anonymous nick-
name of masterchef and is reported by the row Ours (Pre-
dictive + Transitional) in this paper. On both datasets, our
method outperforms all previously reported results under al-
most all metrics. Note that our best submitted model on the
EPIC-KITCHENS challenge is simple and does not make
use of any ensembling nor optical flow input.

4. Conclusion
We have described a new model for future action an-

ticipation. The main motivating idea for our method is to
model action anticipation as a fusion of two complemen-
tary modules. The predictive approach is a purely antici-
patory model. It aims at directly predicting future action
given the present. On the other hand, the transitional model
is first constrained to recognize what is currently seen and
then uses this output to anticipate future actions.

Acknowledgment. The project was partially supported by
the Louis Vuitton - ENS Chair on Artificial Intelligence,
the ERC grant LEAP (No. 336845), the CIFAR Learning
in Machines&Brains program, and the European Regional
Development Fund under the project IMPACT (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000468).

References
[1] M. S. Aliakbarian, F. S. Saleh, M. Salzmann, B. Fernando,

L. Petersson, and L. Andersson. Encouraging lstms to antic-
ipate actions very early. In ICCV, 2017. 1

[2] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In CVPR, 2017. 1, 4

[3] D. Damen, H. Doughty, G. M. Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,
W. Price, et al. Scaling egocentric vision: The epic-kitchens
dataset. In ECCV, 2018. 2, 3, 4, 5

[4] Y. A. Farha, A. Richard, and J. Gall. When will you do
what?-anticipating temporal occurrences of activities. In
CVPR, 2018. 1

[5] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
CVPR, 2016. 1

[6] A. Furnari and G. M. Farinella. What would you expect?
anticipating egocentric actions with rolling-unrolling lstms
and modality attention. arXiv preprint arXiv:1905.09035,
2019. 5

[7] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell.
Actionvlad: Learning spatio-temporal aggregation for action
classification. In CVPR, 2017. 1

Action Verb Noun
A@1 A@5 P R A@1 A@5 P R A@1 A@5 P R

Damen et al. (TSN Fusion) [3] 1.7 9.1 1.0 0.9 25.4 68.3 13.0 5.7 9.8 27.2 5.1 5.6
Damen et al. (TSN Flow) [3] 1.8 8.2 1.1 0.9 25.6 67.6 10.8 6.3 8.4 24.6 5.0 4.7
Damen et al. (TSN RGB) [3] 2.4 9.6 0.9 1.2 25.3 68.3 7.6 6.1 10.4 29.5 8.8 6.7
DMI-UNICT [6] 9.1 21.9 3.2 4.6 26.6 68.1 16.6 11.1 15.5 35.3 9.9 11.7
Ours (Predictive) 6.1 18.0 1.6 2.9 27.5 71.1 12.3 8.4 10.8 30.6 8.6 8.7
Ours (Predictive + Transitional) 7.2 19.3 2.2 3.4 28.4 70.0 11.6 7.8 12.4 32.2 8.4 9.9

Table 3: EPIC-KITCHENS results on hold-out unseen test set S2. The official ranking is based on the action top 1 accuracy score
(A@1). A@1: top-1 accuracy, A@5: top-5 accuracy, P: precision, R: recall. Challenge website details: https://competitions.
codalab.org/competitions/20071. Note that our best model was submitted under the anonymous nickname masterchef.

[8] L. A. Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell,
and B. Russell. Localizing moments in video with natural
language. ICCV, 2017. 1

[9] M. Hoai and F. De la Torre. Max-margin early event detec-
tors. 2014. 1

[10] Y. Kong, Z. Tao, and Y. Fu. Deep sequential context net-
works for action prediction. In CVPR, 2017. 1

[11] T. Lan, T.-C. Chen, and S. Savarese. A hierarchical repre-
sentation for future action prediction. In ECCV, 2014. 1

[12] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 1

[13] J. Liu, B. Kuipers, and S. Savarese. Recognizing human ac-
tions by attributes. In CVPR, 2011. 1

[14] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progres-
sion in lstms for activity detection and early detection. In
CVPR, 2016. 1

[15] T. Mahmud, M. Hasan, and A. K. Roy-Chowdhury. Joint
prediction of activity labels and starting times in untrimmed
videos. In ICCV, 2017. 1

[16] A. Miech, I. Laptev, and J. Sivic. Learnable pooling
with context gating for video classification. arXiv preprint
arXiv:1706.06905, 2017. 1, 3

[17] A. Miech, I. Laptev, J. Sivic, H. Wang, L. Torresani, and
D. Tran. Leveraging the present to anticipate the future in
videos. In CVPR Precognition Workshop, 2019. 1

[18] B. A. Plummer, M. Brown, and S. Lazebnik. Enhancing
video summarization via vision-language embedding. In
CVPR, 2017. 1

[19] M. S. Ryoo. Human activity prediction: Early recognition of
ongoing activities from streaming videos. In ICCV, 2011. 1

[20] Y. Shi, B. Fernando, and R. Hartley. Action anticipation with
rbf kernelized feature mapping rnn. In ECCV, 2018. 1

[21] Z. Shou, H. Gao, L. Zhang, K. Miyazawa, and S.-F. Chang.
Autoloc: Weaklysupervised temporal action localization in
untrimmed videos. In ECCV, 2018. 1

[22] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In ICLR, pages
568–576, 2014. 1

[23] K. K. Singh and Y. J. Lee. Hide-and-seek: Forcing a network
to be meticulous for weakly-supervised object and action lo-
calization. In ICCV, 2017. 1

[24] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
M. Paluri. A closer look at spatiotemporal convolutions for
action recognition. In CVPR, 2018. 1, 3

[25] G. Varol, I. Laptev, and C. Schmid. Long-term Temporal
Convolutions for Action Recognition. PAMI, 2017. 1

[26] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating
visual representations from unlabeled video. In CVPR, 2016.
1, 3, 4

[27] H. Wang and C. Schmid. Action Recognition with Improved
Trajectories. In ICCV, 2013. 1

[28] L. Wang, Y. Xiong, D. Lin, and L. Van Gool. Untrimmednets
for weakly supervised action recognition and detection. In
CVPR, 2017. 1

[29] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, X. Tang, and D. Lin.
Temporal action detection with structured segment networks.
2017. 1

https://competitions.codalab.org/competitions/20071
https://competitions.codalab.org/competitions/20071

Attending to Long(er)-Term Memory for Anticipation

Yaser Souri, Tridivraj Bhattacharyya, Juergen Gall
University of Bonn

{souri@iai., s6trbhat@, gall@iai.} uni-bonn.de

Luca Minciullo
Toyota Motor Europe

luca.minciullo@toyota-europe.com

Abstract

The proposed baseline for action anticipation from the

EPIC-Kitchens [3] paper looks at the last 1 second of the

observable past to anticipate the action in 1 second ahead.

We suggest that looking much longer in the past might

be helpful. In this work we propose a method that look-

ing at the recent observable past (last 1 observable sec-

ond) attends to much longer term past (last 12 seconds)

and gathers information from this longer term memory

to perform anticipation. Our preliminary results suggest

that this method is promising and it is able to achieve the

best reported verb anticipation performance on both EPIC-

Kitchens test sets.

1. Introduction
The proposed baseline for action anticipation from the

EPIC-Kitchens [3] paper looks at the last 1 second of the
observable past to anticipate the action at 1 second ahead.
Given the nature of the dataset, we hypothesize that look-
ing into much longer past might be helpful. Usually there
are information available in much longer past regarding the
general activity that the participant is performing that are
helpful for anticipation.

To achieve this and mitigate GPU memory problems we
don’t perform end-to-end training from raw pixel values or
fine-tune the backbone network. We extracted frame-wise
features using a pretrained network from the videos and use
the extracted features as input to our network. Our network
uses a WaveNet [7] style network to do temporal modeling
of the input features and uses a multi-headed attention [8]
mechanism for attention. Similar to the proposed baseline
[3] we anticipate verb and nouns independently.

1.1. Dataset Splits
We have split the training set into train and validation

sets. In the following we refer to the whole training set
(containing 272 videos) as the trainval set.

Similar to [1] we split the trainval set based on person
ids. This means that the created validation set will in spirit

Figure 1. Feature extraction pipeline.

be similar to the unseen test set (S2). If the person id of
a video is smaller than or equal to 25 it is considered in
the train set, otherwise it is considered in the validation set.
This means that the train set will have 200 videos, while the
validation set has 72 videos.

2. Method
For long-term, untrimmed video processing we use a

pretrained-network for feature extraction and don’t perform
end-to-end training or fine-tuning from raw pixel values.
Following, we first describe our feature extraction pipeline,
then we will describe out proposed network.

2.1. Feature Extraction
We extract frame-wise features from the EPIC-Kitchens

videos. We do so regardless of whether a section of the
video is annotated with an action in the EPIC-Kitchens
dataset or not. In other words, we extract features even
from the ”background” section of the videos. An overview
of the feature extraction pipeline is shown in Figure 1. This
method of feature extraction has shown to be quite effective
in action segmentation both fully supervised [4] and weakly
supervised [6].

Features are extracted at specific frequency ⌫�. The
I3D [2] network is pretrained on the RGB stream of the
Kinetics-400 [5] dataset and we won’t fine-tune it.

We note that Kinetics-400 videos have a frame-rate of

1

Figure 2. Network design.

fkinetics = 25 while EPIC-Kitchens videos have a frame
rate of fepic = 60. From a window of size w we uni-
formly select 64 frames to create the input to the I3D net-
work, where w = 64 ⇥ fepic

fkinetics
. The stride of the input

window depends on the frequency of feature extraction and
is equal to s = fepic

⌫�
. This means that the higher the fre-

quency of feature extraction, the smaller the stride of the
input window. We do not rescale or crop the frames and
perform spatial and temporal average pooling to arrive at a
fixed sized feature vector.

2.2. Network Design

As input we gather the features of the last ⌧ seconds
of observable past (not including the anticipation win-
dow). We use a 7 layer WaveNet [7] with dilation factors
1, 2, 4, 8, 16, 32 & 64, hidden size of 64 and ReLU non-
linearity to perform temporal modeling (gt(.)) of the input
features. The WaveNet has shown to be very effective for
untrimmed video processing for action segmentation [4, 6].
We term the output of the WaveNet as the hidden video rep-

resentation. It has the same temporal resolution as the input.
Using two linear transformations hto and hfrom we create
the two parts of the hidden representation that are going to
be used as input to the multi-headed attention (MHA) [8]
module. The attend from part is used as query (Q) in MHA
and is the last 1 second fo the hidden video representations
after the linear transformation hfrom. The attend to part is
used as both key (K) and value (V) in MHA and is the whole
hidden video representation after linear transformation hto.
The MHA module produces a fixed size output that is used

Figure 3. Results on the validation set. Higher frequency performs
better.

to predict the verb and nouns from independently using two
fully connected layers. Sum of the two cross entropy losses
for verb and noun prediction is used as the training objec-
tive. In Figure 2 an overview of our method is shown.

2.3. Implementation Details
We use a batch size of 8 and optimize our networks for

60 epochs using the Adam optimizer. The learning rate is
set to 3 ⇥ 10�4 and is lowered by a factor of 10 after 50
epochs. Hidden sizes of WaveNet and all other hidden size
dimensions are set to 64. The number of heads in MHA is
1 and increasing it did not help with getting better perfor-
mance on the validation set.

3. Results
3.1. Results on Validation Set

We tried to find what is the best feature extraction fre-
quency ⌫� using the validation set. As can be seen from Fig-
ure 3, higher feature extraction frequencies generally per-
form better.

3.2. Test-Set Results
We submit our method to the server for evaluation on

the test set. We find that after finding the hyperparameters
using the validation set it is important that you train your
method on the whole trainval set as this results in a consid-
erable performance improvement compared to only training
on the train set. We also evaluate an ensemble of 5 differ-
ently initialized models. We find that this kind of ensemble
only achieves slight improvement over a single model. The
complete set of results on the test set can be seen in Ta-
ble 1. Our method shows best performing verb anticipation
performance on both test sets.

Acknowledgment We would like to thank Toyota Motor
Europe for funding and supporting this work.

References
[1] Fabien Baradel, Natalia Neverova, Christian Wolf, Julien

Mille, and Greg Mori. Object level visual reasoning in videos.

2

Training Set Ensemble Seen set (S1) Unseen set (S2)
Verb accuracy Noun accuracy Action accuracy Verb accuracy Noun accuracy Action accuracy

train 7 32.50 10.79 3.75 30.18 8.50 2.94
trainval 7 34.57 12.29 5.12 31.65 9.53 3.76
trainval 3(5) 34.94 13.06 5.23 32.37 9.66 3.52

Table 1. Results on the test set.

In ECCV, 2018.
[2] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,
2017.

[3] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
and Michael Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vision

(ECCV), 2018.
[4] Yazan Abu Farha and Juergen Gall. MS-TCN: Multi-Stage

Temporal Convolutional Network for Action Segmentation. In
CVPR, 2019.

[5] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv, 2017.

[6] Yaser Souri, Mohsen Fayyaz, and Juergen Gall. Weakly Su-
pervised Action Segmentation Using Mutual Consistency. In
arXiv, 2019.

[7] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew W. Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. In SSW, 2016.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017.

3

	1-introduction
	2-AREvaluationModels
	3-UTS-Baidu
	4-Bristol-Oxford
	5-FBK-HUPBA
	6-NTU
	7-UGA
	8-UNICT
	9-RML
	10-Inria-Facebook
	11-Bonn

