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Abstract

This report presents the findings from the 4th EPIC-

KITCHENS-100 challenges, opened from Jan 2022 and

concluded on the 1st of June 2022. It serves as an in-

troduction to all technical reports that were submitted to

the 10th EPIC@CVPR2022 workshop, and an official an-

nouncement of the winners.

1. EPIC-KITCHENS-100
All challenges are based on the publicly available EPIC-

KITCHENS-100 dataset. In summary, EPIC-KITCHENS-
100 provides 20M frames of egocentric footage, captured in
an unscripted manner, with carefully collated annotations
of 90K fine-grained actions. Details of how the dataset
was collected and annnotated are available in our IJCV pa-
per [6].

This report details the submissions and winners of the
2022 edition of the five challenges available on CodaLab:
Action Recognition, Action Anticipation, Action Detec-
tion, Unsupervised Domain Adaptation for Recognition and
Multi-Instance Retrieval. For each challenge, submissions
were limited per team to a maximum of 50 submissions in
total, as well as a maximum daily limit of 1 submission.
In Sec. 2, we update the statistics of dataset download and
usage. The results for all challenges are provided in Sec. 3-
7. The winners of the 2022 edition of these challenges are
noted in Sec. 8.

A snapshot of the complete leaderboard, when the
2022 challenge concluded on the 1st of June, is
available at http://epic-kitchens.github.io/
2022#results.

Details of the three previous year’s reports for 2021,
2020 and 2019 challenges are available from the technical
reports [8], [9] and [10] respectively.

In 2022, EPIC-KITCHENS-100 was downloaded from
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Figure 1: Heatmap of countries based on EPIC-
KITCHENS-100 webpage view statistics, with an increase
of 3.5K views between June 2021 and June 2022.

the official data.bris.ac.uk servers a total of 2430 times,
compared to 2335 downloads in 2021. In Table 1, we show
the distribution of countries of download. Additionally, in
Fig. 1 we show the number of page visits for the webpage
in the same duration. Finally, in Table 2 we report the ac-
tive submissions this year, reporting the change over last
year using arrows. Interestingly, number of submissions
has dropped for both action recognition challenges (super-
vised and UDA). We explain in the relevant sections how
these baeslines are now harder to beat limiting the number
of contributions. The remaining 3 challenges saw a signifi-
cant increase over last year’s contributions, particularly for
Multi-Instance Retrieval.

2. New Leaderboards
Following the recommendations of Codalab, we

moved all 5 leaderboads to the new servers (https:
//codalab.lisn.upsaclay.fr) which offered in-
creased memory and processing capacity. The depricated

leaderboards remain available as read-only and all submis-
sions have been backed up. To ensure continuity, All chal-
lenges this year match the description of last year’s chal-
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United States 721 China 476 Germany 186
United Kingdom 160 France 100 Italy 72
Canada 63 Japan 56 Netherlands 56
Brazil 42 Spain 37 India 36
South Korea 34 Sweden 24 Belgium 23
Mexico 22 Russia 21 Indonesia 20
Poland 20 Turkey 19 Taiwan 17
Israel 16 Australia 14 New Zealand 13
South Africa 13 Argentina 10 Denmark 10
Austria 9 Hungary 9 Malaysia 8
Chile 7 Ireland 7 Bangladesh 6
Czech 6 Portugal 6 Romania 6
Croatia 5 Finland 5 Singapore 5
Slovakia 5 Ukraine 5 Bulgaria 4
Colombia 4 Egypt 4 Greece 4
Luxembourg 4 Pakistan 4 Phillipines 4
United Arab Emirates 4 Costa Rica 3 Lithuania 3
Puerto Rico 3 Thailand 3 Vietnam 3
Yemen 3 Albania 2 Algeria 2
Ecuador 2 Estonia 2 Georgia 2
Honduras 2 Iceland 2 Iran 2
Kenya 2 Latvia 2 Malta 2
Moldova 2 Morocco 2 Nigeria 2
Serbia 2 Tunisia 2 Afghanistan 1
Bahamas 1 Bosnia and Herzegovina 1 Dominican Republic 1
El Salvador 1 Ethiopia 1 Iraq 1
Kuwait 1 Libya 1 Macao 1
Macedonia 1 Maldives 1 Mauritius 1
Myanmar 1 Nicaragua 1 Oman 1
Panama 1 Papua New Guinea 1 Peru 1
Qatar 1 Seychelles 1 Slovenia 1
Syria 1 Tanzania 1 Uganda 1
Venezuela 1

Table 1: Downloads for EPIC-KITCHENS dataset, in 2022,
by country

lenges. In January 2022, we started the official challenge
phase for 5 challenges available in CodaLab and along with
each challenge we released codebase with pre-trained mod-
els, features and evaluation scripts:

• Action Recognition at https://github.com/
epic-kitchens/C1-Action-Recognition:
Five pre-trained models were made available using the
codebases: TSN, TRN, TBN, TSM and SlowFast, as well
as evaluation script.

• Action Detection at https://github.com/
epic-kitchens/C2-Action-Detection: with
pre-extracted features, a baseline using BMN model and
evaluation script.

• Action Anticipation at https://github.com/
epic-kitchens/C3-Action-Anticipation
with pre-extracted features, RULSTM base model and
evaluation script.

• Unsupervised Domain Adaptation for Recognition
at https://github.com/epic-kitchens/
C4-UDA-for-Action-Recognition with pre-
extracted audio-visual features, TA3N model and
evaluation script.

• Multi-Instance Retrieval at https:
//github.com/epic-kitchens/
C5-Multi-Instance-Retrieval with features,
JPoSE model and evaluation script.

Recall that each submission is requested to provide their
level of supervision following the proposed Supervision

Action Recognition 11 8 64H
Action Anticipation 19 16 138N
Action Detection 7 7 91N
UDA for Recognition 12 8 103H
Multi-Instance Retrieval 9 5 32N

Table 2: Number of registered teams, active teams and sub-
missions on CodaLab for the five challenges

Levels Scale (SLS) [11]. We next present the findings for
each challenge and introduce the enclosed reports.

3. Action Recognition Challenge
The Action Recognition challenge has been running

since 2019. In both train and test sets, the start and end
times of an action are given. Correct recognition of the ac-
tion includes correctly recognising the ‘verb’ class and the
‘noun’ class. Table 3 shows the entries on the challenge
leaderboard for 2022. Methods are ranked based on top-1
action accuracy (noted by arrow), which was used to decide
on the overall rank.

Only two submissions warranted the top winning spots.
As shown in the table, other submissions could not outper-
form last year’s winning team. Best performing method
in 2022 improved over last year’s winning entry by by
+0.3%, +7.0% and +4.1% for VERB, NOUN and AC-
TION Top-1 Accuracy, respectively. Of particular note is
the marginal progress on the verb classification compared
to the significant jump on nouns. This becomes clearer
when analysing the pretraining flags for these entries. The
top-ranked Google Research entry in fact reports an SLS-
PT score of 5. This indicates a private large-scale dataset
was used for the model’s pre-training which gives this ap-
proach a significant advantage in recognising nouns primar-
ily. In comparison, the second-ranked model only uses pub-
lic datasets such as Kinetics [3] for pre-training, but relies
on neighbouring action context and a language model. We
describe the contributions of each of the teams, based on
their technical reports.

3.1. Technical Reports
Technical reports for the Action Recognition challenge,

in order of their overall rank on the public leaderboard, are:
Google Research (Rank 1) is the top ranking entry. This
work employs a multimodal transformer of images, optical
flow and audio spectograms. Each modality is tokenised
using 3D patches (or tubelets) of various sizes. The pro-
posed approach is accordingly referred to as “Multi-view”.
To train the transformer, a large number of data augmenta-
tion approaches were incorporated and Table 1 in the report
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Submissions SLS Overall% Unseen% Tail%
Rank Team Entries Date PT TL TD VERB NOUN ACTIONN VERB NOUN ACTION VERB NOUN ACTION
4 Google Research 8 06/01/22 5.0 3.0 4.0 70.9 66.2 52.8 64.5 61.6 44.8 39.7 43.7 28.5
4 Oxford+Bristol 8 06/01/21 2.0 3.0 4.0 70.7 63.5 50.9 64.5 58.2 42.6 37.8 37.3 25.3
3 SCUT-JD 24 06/01/21 2.0 3.0 4.0 70.6 59.2 48.7 63.5 52.7 39.8 36.1 30.3 22.2
4 CNUS-HUST-THU-Alibaba 27 05/30/21 2.0 3.0 4.0 69.3 60.3 48.5 62.9 54.1 39.5 34.0 33.1 22.7
5 TCN 1 12/20/21 2.0 3.0 3.0 67.9 60.0 46.8 61.1 55.2 39.0 35.2 34.7 22.8
6 SAIC-FBK-UB 8 05/29/21 2.0 3.0 4.0 68.2 55.5 44.8 62.0 50.6 37.5 34.6 25.9 19.0
7 CTS-AI 13 06/01/22 2.0 3.0 4.0 65.0 53.1 42.8 57.2 47.9 35.1 25.6 20.3 16.2
8 MEITUAN 19 06/01/22 2.0 3.0 3.0 66.1 54.0 40.4 59.4 45.6 33.1 34.5 28.5 10.5
9 EPIC TSM FUSION 2 10/10/21 2.0 3.0 4.0 65.3 47.8 37.4 59.7 42.5 30.6 30.0 17.0 13.5
10 EPIC SLOWFAST RGB 3 01/14/21 2.0 3.0 4.0 63.8 48.6 36.8 57.7 42.6 29.3 29.7 17.1 13.5
11 EPIC TBN FUSION 7 01/27/21 2.0 3.0 4.0 62.7 47.6 35.5 56.7 43.7 29.3 31.0 19.5 14.1
12 EPIC TRN FUSION 2 10/10/20 2.0 3.0 4.0 63.3 46.2 35.3 57.5 41.4 29.7 28.2 14.0 12.2

Table 3: Results on EPIC-KITCHENS-100 Action Recognition challenge - 1 June 2022

Submissions SLS Overall% Unseen% Tail%
Rank Team Entries Date PT TL TD VERB NOUN ACTIONN VERB NOUN ACTION VERB NOUN ACTION
1 SCUT 7 06/01/22 2.0 3.0 3.0 37.91 41.71 20.43 27.94 37.07 18.27 32.43 36.09 17.11
2 NVIDIA-UNIBZ 26 06/01/22 1.0 3.0 4.0 29.67 38.46 19.61 23.47 35.25 16.41 23.48 31.11 16.63
3 ICL-SJTU 22 06/01/22 2.0 4.0 4.0 41.96 35.74 19.53 33.35 26.80 15.85 41.01 33.22 16.87
4 PCO-PSNRD 7 05/30/22 2.0 4.0 3.0 30.85 41.32 18.68 25.65 35.39 16.32 24.99 35.40 16.14
10 AVT-FB-UT 13 06/01/21 2.0 4.0 4.0 25.25 32.04 16.53 20.41 27.90 12.79 17.63 23.47 13.62
11 Panasonic CNSIC PSNRD 10 05/27/21 1.0 4.0 3.0 30.38 33.50 14.82 21.08 27.11 10.21 24.57 27.45 12.69
13 ICL-SJTU 4 06/01/21 1.0 4.0 3.0 36.15 32.20 13.39 27.60 24.24 10.05 32.06 29.87 11.88
16 RULSTM-FUSION 1 09/30/20 1.0 4.0 3.0 25.25 26.69 11.19 19.36 26.87 9.65 17.56 15.97 7.92
17 EPIC CHANCE BASELINE 1 09/30/20 0.0 1.0 3.0 6.17 2.28 0.14 8.14 3.28 0.31 1.87 0.66 0.03

Table 4: Results on EPIC-KITCHENS-100 Action Anticipation challenge - 1 June 2022

details the hyperparameters for these augmentations. The
model is initialised from the private large-scale web dataset
(WTS) [21], hence the submission is correctly tagged with
the SLS-PT score of 5, indicating a private dataset was used
for pre-training. 10 Different models were trained to form
the ensemble. An ablation of the various models is included
in the report.

Oxford+Bristol (Rank 2) builds on a prior model [18],
noted in Table 3 on Rank 5 (TCN). The approach offers
novel modifications that achieve significant improvement
on the test sets, improving the top-1 action recognition by
4.1%. Different from [18], temporal context is modelled by
surrounding frames/clips rather than by nearby actions. The
model considers two input modalities - RGB and Audio, as
well as a language model that refines predictions based on
probable sequences, learnt from training. The final submis-
sion is an ensemble of 16 models of varying context dura-
tions and number of clips.

As noted earlier, only two submissions outperformed last
year’s winning entry. Accordingly, only two teams were
awarded prizes.

Meituan (Rank 4 (2022), Rank 8 (overall)) utilises spa-
tial detections of hands and objects to build an ensemble of
gloabl (full-image) as well as local (hands + objects) detec-
tors. Additionally, the prior probability of actions as combi-
nations of valid verbs and nouns are considered in the learn-
ing.

4. Action Anticipation Challenge
The 2022 edition of the Action Anticipation challenge

has been set similarly to the past editions. Methods were
asked to predict upcoming action happening after 1 second
from the observed video segment. Predictions follow the
same format as that of the recognition challenge, i.e., the
participants provided prediction scores for verbs, nouns and
actions. Table 4 shows the results achieved by the partici-
pants, along with the public leaderboard rankings. The top-
3 submissions are highlighted in bold. Lines highlighted in
green report the results of the winners of the CVPR 2021
competition. Shaded lines reflect the baseline models. All
submissions outperformed the baselines and winners from
the past edition of the challenge. Overall, the submis-
sions have improved over the previous models by +8.95%,
+6.22% and 3.49% for VERB, NOUN and ACTION Over-
all Mean Top-5 Recall.

We next summarise the contributions of the participants
based on their technical reports.

4.1. Technical Reports
Technical reports for the Action Anticipation challenge,

in order of their overall rank on the public leaderboard, are:
SCUT (Rank 1) The method is based on a Causal Trans-
former Decoder. The performance of the baseline are im-
proved introducing two main modules: an anticipation time
knowledge distillation module and a verb-noun relation
module. The distillation module uses a teacher transformer
observing the whole video (past and future) to encourage
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the teacher to fill the representation gap due to the unob-
served future by using learned future embeddings. The
verb-noun relation module is used to allow for interaction
between the inferred future verb and the nouns in the ob-
served video. Different backbones are used for feature ex-
traction and an ensemble of 10 models is used to obtain the
final predictions.
NVIDIA-UNIBZ (Rank 2) The method is an ensem-
ble of instances of two main models: Higher Order Re-
current Space-time Transformer (HORST) and Message-
Passing Neural Network with Edge Learning (MPNNEL).
The HORST model processes features extracted with a
2D-CNN backbone, which are used as a query and cross-
reference from historical states via a space-time decom-
position attention. MNPNNEL is based on a graph struc-
ture, where the topology is inferred from the input at each
time step. Multi-head attention is used for information rout-
ing between vertices. Training is performed in four stages
aimed to build a strong feature extractor, focus on the an-
ticipation task, distinguish between hard samples and tail
classes. A final training stage finetunes the model on the
combination of the training and validation set. Classes are
weighted to cope with the long-tail distribution problem.
ICL-SJTU (Rank 3) The method is based on the Trans-
Action architecture. The approch is designed to cope with
the long-tail distribution of EPIC-KITCHENS-100 and the
domain shift caused by the variability in human behavior,
camera viewpoint and scene settings which leads to intra-
class inter-domain variations. To deal with the domain shift,
the approach considers data from the same subject at the
same time as a single domain. Prototype learning is hence
used to tackle domain shift and external knowledge in the
form of word semantic embeddings is used to regularize
learning through a contrastive loss. To make training robust
to the long-tail distribution, the authors propose a two-stage
training in which the model is first trained using standard
cross entropy, then finetuned with class reweighting. Model
ensembling is further used to improve results.
PCU-PSNRD (Rank 4) The method described in this sub-
mission is based on a Video Swin Transformer baseline,
which is trained to account for the long-tail distribution
characterizing the EPIC-KITCHENS-100 dataset and to
provide better generalization via augmentations and model
ensembling. Specificlaly, the LDAM and Logit Adjust-
ments techniques are used to cope with the long-tail dis-
tribution, RandAugment-T is used to provide data augmen-
tations, and model ensembling is tuned using the Optuna
framework.

5. Action Detection Challenge
The Action Detection challenge has been set similarly to

the 2021 challenge editions and follows similar challenges
in action detection [15]. Participants have been instructed

to consider the test videos as untrimmed, i.e., no temporal
segment annotations can be used at test time. The goal is to
detect all action instances within the untrimmed video, as
in [17].

Participants provided the detected temporal segments for
each test video, along with the predicted verb and noun.
Results are reported using mean Average Precision (mAP)
considering different Intersection over Union (IoU) thresh-
olds ranging from 0.1 to 0.5. Results are reported on
the whole test set. Table 5 shows the results achieved by
the participants, along with the public leaderboard rank-
ing. Methods are ranked by Average ACTION mAP. The
Top-3 submissions among the participants are highlighted
in bold. Green lines report the results of the winner of
the past edition. Shaded lines reflect the baseline model.
All submissions outperformed the baselines, while the top-
2 submissions outperformed previous winners. Overall,
the submissions have improved over the past methods by
+6.98%, +3.96% and +5.17% for VERB, NOUN and AC-
TION Avarage mAP.

We next summarise the contributions of the participants
based on their technical reports.

5.1. Technical Reports
Technical reports for the Action Detection challenge, in

order of their overall rank on the public leaderboard, are:
Alibaba (Rank 1). This method proposes a one-stage ac-
tion detection method based on transformers. Clip-based
features are first extracted using pre-trained video encoders.
Features are added to clip embeddings and aggregated
through a transformer encoder. Detection heads predict a
fixed number of N action segments, each including a verb
prediction, a noun prediction, and a pair of starting and end
times. Focal losses are used for verbs and nouns, while 1D
IOU losses are used to regress start and end times.
4Paradigm-UWMadison-NJU (Rank 2). This report
presents results obtained with ActionFormer [24], a
transformer-based action localisation method proposed by
the same authors. The report shows that combining fea-
tures extracted from very different architectures is beneficial
for the localisation task. Specifically, the authors use both
a fully convolutional model (SlowFast R101-NL [14]) and
a Transformer (ViViT [1]). An interesting finding of this
work is that following the two-stream architecture to pre-
dict verb and noun separately works better than attaching a
verb and a noun head to a single Action-Former model.
CTC-AI (Rank 3). The described approach extracts clip
features using SlowFast [14] and TimeSformer [2]. Fea-
tures are then summed to positional embeddings and en-
coded via a neighbourhood-window-attention and a multi-
head-in-head transformer to model the relationship between
and within action clips. Similar to ActionFormer [24], this
method combines multiscale-feature representations with
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Submissions SLS Mean Average Precision (mAP)
Rank Team Entries Date PT TL TD Task @0.1 @0.2 @0.3 @0.4 @0.5 Avg.N

VERB 30.67 29.40 26.81 24.34 20.51 26.35
NOUN 30.96 29.36 26.78 23.27 18.80 25.831 Alibaba 18 06/01/22 2.0 3.0 4.0
ACTION 24.57 23.50 21.94 19.65 16.74 21.28
VERB 26.97 25.91 24.21 21.77 18.47 23.47
NOUN 28.61 27.14 24.92 22.14 18.69 24.302 4Paradigm-UWMadison-NJU 19 06/01/22 2.0 3.0 4.0
ACTION 23.90 22.98 21.37 19.57 16.94 20.95
VERB 22.77 22.01 19.63 17.81 14.65 19.37
NOUN 26.44 24.55 22.30 19.82 16.25 21.873 Alibaba-MMAI-Research 7 05/18/21 2.0 3.0 3.0
ACTION 18.76 17.73 16.26 14.91 12.87 16.11
VERB 22.62 21.73 20.68 17.74 15.16 19.58
NOUN 20.65 19.58 18.34 16.18 12.88 17.524 CTC-AI 25 06/01/22 2.0 3.0 4.0
ACTION 16.68 16.11 15.15 13.59 11.66 14.64
VERB 25.33 23.99 21.91 19.61 17.08 21.58
NOUN 18.99 17.87 16.41 14.43 11.36 15.815 Bristol-MaVi 22 06/01/22 2.0 3.0 4.0
ACTION 14.71 13.98 12.86 11.56 9.85 12.59
VERB 18.26 17.36 16.10 12.52 10.36 14.92
NOUN 15.97 14.60 13.09 10.94 8.37 12.607 LocTransformer 4 05/22/21 2.0 3.0 3.0
ACTION 8.77 8.04 7.40 6.31 5.07 7.12
VERB 11.10 9.40 7.44 5.69 4.09 7.54
NOUN 11.99 8.49 6.04 4.10 2.80 6.688 EPIC BMN SLOWFAST 1 01/10/21 2.0 3.0 3.0
ACTION 6.40 5.37 4.41 3.36 2.47 4.40

Table 5: Results on EPIC-KITCHENS-100 Action Detection challenge - 1 June 2022

local self-attention and uses a decoder to classify each point
in time and estimate action boundaries.
Bristol-MaVi (Rank 4). This method proposes an
anchor-free approach using SlowFast [14] features and the
transformer-based ActionFormer [24] framework. The key
component of the method is the Gaussian Boundary Mech-
anism, where an additional head predicts the confidence
score of the start/end bounds produced by the model. Con-
fidence scores are modelled with a Gaussian. The Gaussian
Boundary Mechanism improves the ranking of the candi-
date action segments, which in turn boosts the localisation
performance of the framework.

6. Unsupervised Domain Adaptation for
Recognition Challenge

The Unsupervised Domain Adaptation for Recognition
challenge follows the same task as the Action Recogni-
tion, however, the labelled videos available during training
(source) are collected two years before the videos for testing
(target). Due to the different recording times, there is a do-
main gap between source and target. The different cameras
used, the change in location of participants and the differing
tools and activities in the domains, are all factors that con-
tribute to the drop in performance when testing on target
instead of source. The goal of this challenge is to improve
action recognition performance on target with the addition
of unlabelled target data during training. This reduces an-
notation cost as it is assumed unlabelled data is cheap to
collect in the target domain compared to annotation.

Table 6 shows the results achieved from the participants.

The winning entry improves over last year’s methods by
5.1% top-1 action accuracy. The majority of submissions
did not submit predictions for Source Test, which were op-
tional for submission on CodaLab. This would have pro-
vided additional insights into how much each submission
improves action recognition in general compared to over-
coming the domain gap. We encourage next year’s submis-
sions to consider providing the Source Test scores.

6.1. Technical Reports

The technical reports for the Unsupervised Domain
Adaptation for Recognition challenge, in order of their
overall rank on the public leaderboard, are given in this sec-
tion. Most solutions exploited multiple modalities for do-
main adaptation, while the best performing solutions used
additional backbone architectures compared to the baselines
which used TBN, and incorporate prior knowledge from ac-
tion recognition model and co-occurrence matrix of verb
and noun.
VI-I2R (Rank 1) The key idea of this method is to in-
troduce prior knowledge from action recognition model to
disentangle the action-aware source features for alignment
with target features. In addition, the target action prediction
results are further refined by co-occurrence matrix of verb
and noun to eliminate the impossible actions. For the video
presentation, pre-trained slowfast [14] is employed to obtain
frame-level features and Graph Convolutional Network is
used for temporal relation modelling to get the video-level
features.
Audio-Adaptive-CVPR2022 (Rank 2) This method pro-
poses a idea to enhance visual features by leveraging audio
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Submissions SLS Target Top-1 Accuracy (%) Target Top-5 Accuracy (%)
Rank Team Entries Date PT TL TD VERB NOUN ACTIONN VERB NOUN ACTION
1 VI-I2R 30 06/01/22 2.0 4.0 3.0 57.89 40.07 30.12 83.48 64.19 48.10
2 Audio-Adaptive-CVPR2022 4 05/12/22 2.0 3.0 3.0 52.95 42.26 28.06 80.03 67.51 44.03
3 plnet 37 05/29/22 2.0 3.0 3.0 55.51 35.86 25.25 82.77 60.65 40.09
4 CVPR2021-chengyi 1 01/17/22 2.0 3.0 3.0 53.16 34.86 25.00 80.74 59.30 40.75
5 CVPR2021-M3EM 1 01/17/22 2.0 3.0 3.0 53.29 35.64 24.76 81.64 59.89 40.73
6 CVPR2021-plnet 1 01/17/22 2.0 3.0 3.0 55.22 34.83 24.71 81.93 60.48 41.41
7 Nie-Lin 6 06/01/22 2.0 3.0 3.0 48.87 28.72 19.88 74.61 49.70 32.32
8 EPIC TA3N 1 01/17/22 2.0 3.0 3.0 46.91 27.69 18.95 72.70 50.72 30.53
9 EPIC TA3N SOURCE ONLY 1 01/17/22 2.0 3.0 3.0 44.39 25.30 16.79 69.69 48.40 29.06

Table 6: Results on the Unsupervised Domain Adaptation for Recognition challenge - 1 June 2022

to learn more domain-invariant and discriminative features
in the target domain. Audio-infused recognizer is proposed
to fuse information in audio and visual modalities and re-
duce the impact of domain-relevant visual features.
plnet (Rank 3) extends Relative Norm Alignment net-
work (RNA-Net) [20] with optical flow, then introduces
frame-level and video-level adversarial alignment between
source and target domains, with adding attentive entropy
loss to decrease the uncertainty of target prediction. In
addition, Multiple Spatio-Temporal Adversarial Alignment
(MSTAA) is proposed to reduce environmental bias. Fi-
nally, Min-Entropy Consistency (MEC) and Complement
Entropy (CENT) are utilized to encourage consistency
among different models and reduce the effect o uncertain
predictions.
Nie-Lin (Rank 7) The main idea of this approach is to intro-
duce a learnable patch selection method for domain adapta-
tion. The selected patches focus on the local information,
by incorporating the global information in whole frames,
performance gain is achieved.

7. Multi-Instance Retrieval Challenge
This is the second year that the Multi-Instance Retrieval

challenge has ran as part of the EPIC-KITCHENS-100 chal-
lenges. Apart from the ranking of the methods according to
the evaluation metrics, the challenge is unchanged from the
previous year. Details of the challenge can be found below:
Given a query video segment, the goal of video-to-text re-
trieval is to rank captions in a gallery set, C, such that those
with a higher rank are more semantically relevant to the ac-
tion in the query video segment. On the contrary, the goal of
text-to-video retrieval is to rank videos given a query cap-
tion ci 2 C. Differently from the other retrieval challenges,
where captions are considered relevant if and only if they
were collected for the same video, in this challenge the class
knowledge proxy measure introduced in [7] and [22] is used
to define caption relevancy (e.g. “put glass” and “place cup”
are considered semantically relevant).

Video-to-text and text-to-video results are reported using

mean Average Precision (mAP) and normalised Discounted
Cumulative Gain (nDCG) on the whole test set. For this
year, the results are ranked based on a combination of aver-
age mAP and nDCG performance, differing from last year
which ranked solely on average nDCG. This led towards
joint placed winners for both 1st and 3rd place as methods
tended to perform better on one of the two metrics. The met-
rics both evaluate the ranking of the gallery set and allow
for multiple correct retrievals, however, they differ in that
mAP only allows for a binary relevancy, i.e. a gallery item
is either considered relevant or not, whereas nDCG assigns
a continuous relevance score for each gallery item, allow-
ing for differing levels of relevancy to be taken into account
within the ranking. This represents an interesting direction
to look into for future work to discover why methods may
perform better/worse on one of the metrics.

Table 7 shows the public results achieved by the partici-
pants. The joint Top-1 winning submissions are highlighted
in bold, whereas shaded lines indicates the baselines mod-
els. The best submission(s) outperformed the baseline MI-
MM [6] by a significant margin: +21.31%, +23.06% and
+22.19% for T2V, V2T and Average mAP and +18.40%,
+19.44 and +18.92% for T2V, V2T and Average nDCG.
Note that, for this edition of the challenge, we only included
the Mi-MM baseline as JPoSE was found to be a very hard
baseline to beat last year, due to the chosen features for
training.

We next summarise the contribution of the participants
based on their technical reports.

7.1. Technical Reports
The technical reports of the submission of the Multi-

Instance Retrieval challenge are:
UniUD-UB-UniBZ (Rank 1) The authors proposed an en-
semble method of different models (JPoSE [23] and HGR
[4]) trained with two relevance-augmented versions of the
triplet loss. The JPoSE model is trained with a margin m
which is proportional to the relevance value of the video and
caption descriptors that should be contrasted [13]. HGR is
trained with the RANP strategy [12] which uses the rele-
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Submissions SLS mean Average Precision (mAP) normalised Discounted Cumulative Gain (nDCG)
Rank Team Entries Date PT TL TD T2V V2T Avg.N T2V V2T Avg.N
=1 afalcon 3 06/01/22 2.0 3.0 3.0 44.39 55.15 49.77 58.88 63.16 61.02
=1 kevin.lin 3 05/30/22 3.0 3.0 3.0 40.95 53.85 47.39 59.60 63.29 61.44
=3 buraksatar 12 05/26/22 2.0 3.0 3.0 38.10 47.52 42.81 54.12 56.55 55.33
=3 haoxiaoshuai 11 05/31/22 2.0 3.0 3.0 38.34 49.69 44.02 51.31 54.82 53.06
4 MI-MM 4 12/10/21 2.0 3.0 3.0 23.08 32.09 27.58 40.48 43.72 42.10

Table 7: Results on EPIC-KITCHENS-100 Multi-Instance Retrieval challenge - 1 June 2022

vance function and a threshold ⌧ to separate relevant from
irrelevant samples within the batch.
Ego-VLP (Rank 1) The idea is to use a video-language
model (VLP) [19] pre-trained on a clean subset of Ego4D
[16] that is able to transfer its video-text representation for
the MIR task. The authors proposed a modified version of
the MI-MM loss [23] to fine-tune the model where the mar-
gin m is not fixed. Moreover, a dual-softmax technique [5]
is used in inference to scale the similarities and filter out
hard cases.
IIE-MRG (Rank 3) The proposed Cross-Modal Alignment
Network (CMAN) explores the similarity information of
different modalities by a semantic alignment and the bi-
directional ranking loss. In addition, they examining the
similarities between instances of the same modality which
are exploited by the intra-modal alignment.
NTU-A*STAR (Rank 3) The method proposes a modified
version of JPoSE [23] where a self-attention layer is added
in the video branch to exploit contextualised visual features.

8. 2022 Challenge Winners
Accordingly, Table 8 details the winners of the 2022

EPIC challenges, announced as part of EPIC@CVPR2022
hybrid workshop. A capture of the certificate awarding cer-
emony for the 2022 challenges also in Fig 2—showcasing
both in-person and online winning teams.

Team Member Affiliations

A
ct

io
n

R
ec

og
ni

tio
n 1� Google Research Xuehan Xiong Google Research

(xxiong) Anurag Arnab Google Research
Arsha Nagrani Google Research
Cordelia Schmid Google Research

2� Oxford-Bristol Jaesung Huh VGG, University of Oxford
(Jaesung) Evangelos Kazakos University of Bristol

Jacob Chalk University of Bristol
Dima Damen University of Bristol
Andrew Zisserman VGG, University of Oxford

A
ct

io
n

A
nt

ic
ip

at
io

n

1� SCUT Zeyu Jiang South China University of Technology
(hrgdscs) Changxing Ding South China University of Technology

2� NVIDIA-UNIBZ Tsung-Ming Tai NVIDIA, Free University of Bozen-Bolzano
(corcovadoming) Oswald Lanz Free University of Bozen-Bolzano

Giuseppe Fiameni NVIDIA
Yi-Kwan Wong NVIDIA
Sze-Sen Poon NVIDIA
Cheng-Kuang Lee NVIDIA
Ka-Chun Cheung NVIDIA
Simon See NVIDIA

3� ICL-SJTU Xiao Gu Imperial College London
(Shawn0822) Yao Guo Shanghai Jiao Tong University

Zeju Li Imperial College London
Jianing Qiu Imperial College London
Benny Lo Imperial College London
Guang-Zhong Yang Shanghai Jiao Tong University

A
ct

io
n

D
et

ec
tio

n

1� Alibaba Lijun Li Alibaba
(lijun) Li’an Zhuo Alibaba

Bang Zhang Alibaba
2� 4Paradigm-UWMadison-NJU Chenlin Zhang 4Paradigm, Nanjing University

(tzzcl1) Lin Sui Nanjing University
Abrar Majeedi University of Wisconsin-Madison
Viswanatha Reddy Gajjala University of Wisconsin-Madison
Yin Li University of Wisconsin-Madison

3� CTC-AI Xiaodong Dong China Telecom
(cuis) Hao Sun China Telecom

Xuyang Zhou China Telecom
Qihang Wu China Telecom
Shun Cui China Telecom
Dong Wu China Telecom
Aigong Zhen China Telecom

U
D

A
fo

r
R

ec
og

ni
tio

n

1� A*STAR Yi Cheng A*STAR, Singapore
(VI-I2R) Dongyun Lin A*STAR, Singapore

Fen Fang A*STAR, Singapore
Hao Xuan Woon A*STAR, Singapore, NUS
Qianli Xu A*STAR, Singapore
Ying Sun A*STAR, Singapore

2� Uni-Amsterdam Yunhua Zhang University of Amsterdam
(Audio-Adaptive) Hazel Doughty University of Amsterdam

Cees Snoek University of Amsterdam
3� Torino Mirco Planamente Politecnico di Torino, Italy

(plnet) Gabriele Goletto Politecnico di Torino, Italy
Gabriele Trivigno Politecnico di Torino, Italy
Giuseppe Averta Politecnico di Torino, Italy
Barbara Caputo Politecnico di Torino, Italy

M
ul

ti-
In

st
an

ce
V

id
eo

R
et

rie
va

l

1� UniUD-UB-UniBZ Alex Falcon University of Udine
(afalcon) Giuseppe Serra University of Udine

Sergio Escalera University of Barcelona
Oswald Lanz Free University of Bozen-Bolzano

1� Ego-VLP Kevin Qinghong Lin National University of Singapore
(kevin.lin) Alex Jinpeng Wang National University of Singapore

Rui Yan National University of Singapore
Eric Zhongcong Xu National University of Singapore
Rongcheng Tu Tencent Data Platform
Yanru Zhu Tencent Data Platform
Wenzhe Zhao Tencent Data Platform
Weijie Kong Tencent Data Platform
Chengfei Cai Tencent Data Platform
Hongfa Wang Tencent Data Platform
Wei Liu Tencent Data Platform
Mike Zheng Shou National University of Singapore

3� IIE-MRG Xiaoshuai Hao Chinese Academy of Sciences
(buraksatar) Yufan Liu Chinese Academy of Sciences

Wanqian Zhang Chinese Academy of Sciences
Dayan Wu Chinese Academy of Sciences
Bo Li Chinese Academy of Sciences

3� NTU-A*STAR Burak Satar A*STAR, NTU, Singapore
(haoxiaoshuai) Zhu Hongyuan A*STAR, Singapore

Hanwang Zhang NTU, Singapore
Joo Hwee Lim A*STAR, NTU, Singapore

Table 8: Top-3 Winners - 2022 EPIC-KITCHENS-100
challenges
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Figure 2: Winners during 10th EPIC@CVPR2022 hybrid Workshop, 20 June 2022.
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mar, F. Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Mod-
hugu, J. Munro, T. Murrell, T. Nishiyasu, W. Price, P. Ruiz,
M. Ramazanova, L. Sari, K. Somasundaram, A. Souther-
land, Y. Sugano, R. Tao, M. Vo, Y. Wang, X. Wu, T. Yagi,
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M&M Mix: A Multimodal Multiview Transformer Ensemble

Xuehan Xiong, Anurag Arnab, Arsha Nagrani, Cordelia Schmid
Google Research

{xxman,aarnab,anagrani,cordelias}@google.com

Abstract

This report describes the approach behind our submis-

sion to the 2022 Epic-Kitchens Action Recognition Chal-

lenge from team Google Research Grenoble . Our approach

builds upon our recent work, Multiview Transformer for

Video Recognition (MTV), and adapts it to multimodal in-

puts. Our final submission consists of an ensemble of Mul-

timodal MTV (M&M) models varying backbone sizes and

input modalities. Our approach achieved 52.8% Top-1 ac-

curacy on the test set in action classes, which is 4.1% higher

than last year’s winning entry.

1. Introduction

Transformers have replaced Convolutional Networks
(CNNs) as the de facto backbone for video understanding.
The state-of-the-art results on popular datasets (e.g., Kinet-
ics [2], Moments in Time [19], Epic-Kitchens [4], etc) are
all obtained using a pure transformer-based approach. Our
approach is built upon a very recent state-of-the-art method
for video classification, Multiview Transformers for Video
Recognition (MTV) [29]. MTV proposed a multi-stream
architecture to process video data in a multiscale fashion
where each stream takes in different-sized tubelets of RGB
frames, however no other modalities (such as sound) were
used for making a prediction.

Epic-Kitchens is a large-scale dataset of first-person
(egocentric) videos recorded in kitchen environments. Con-
testants of the Action Recognition challenge are required to
predict a verb and a noun for each video clip. Videos in this
dataset are multimodal (they contain an audio track) and the
egocentric domain consists of rich sounds resulting from
the interactions between humans and objects, as well as the
proximity of the wearable microphone to the undergoing ac-
tion. Sound is a hence a discriminative feature for identify-
ing actions [17, 20], for example, the sound of running wa-
ter provides important cues to predict actions such as “wash
glass”. Optical flow is another modality that is complemen-
tary to RGB frames as shown in previous work [22]. As we
will show later in the experiments, this observation remains
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Figure 1. Overview of our Multimodal Multiview Transformer
(M&M). The input video consists of three modalities, spectro-
gram, optical flow, and RGB frames (from left to right) and we
create multiple representations or “views” by tokenizing each in-
put modality using tubelets of different sizes. These tokens are
fed into separate encoders and further fused through a Cross View
Fusion module, and finally aggregated by a global encoder. Note
that each encoder can vary in architecture.

true for state-of-the-art video transformer models, such as
MTV. In this work, we extend MTV to process multimodal
inputs where each stream encodes input data from one tem-
poral resolution and from one modality.

2. Multimodal Multiview Transformers

2.1. Background (MTV)

This section presents a brief overview of Multiview
Transformers (MTV) [29]. It consists of separate trans-
former encoders for each view which are connected by lat-
eral connections to fuse cross-view information. A view is
defined as a video representation expressed by a set of fixed-
sized tubelets. A larger view corresponds to a set of larger
tubelets (and thus fewer tokens) and a smaller view corre-
sponds to smaller tubelets (and thus more tokens). Each
transformer layer within the encoders follows the same de-
sign as the original transformer of Vaswani et al. [27]. Fur-
thermore, within each transformer layer, self-attention is
computed only among tokens extracted from the same tem-
poral index, following the Factorised Encoder of [1]. This
significantly reduces the computational cost of the model.
We chose cross-view attention as the fusion method as it



gives the best performance as shown in [29]. Finally, the
classification tokens from each view are extracted and pro-
cessed with another transformer encoder that aggregates in-
formation from all views.

2.2. M&M

The overall architecture of M&M (shown in Figure. 1)
remains the same as MTV except for the input tokenization
step. In this example, the input video has three modalities,
RGB, optical flow, and short-term magnitude spectrograms
derived from audio. For each modality, we can have mul-
tiple representations or “views” by tokenizing the frames
from this modality using different tubelet sizes. An alter-
native design is to use a single encoder that takes in tokens
from all modalities [11, 16, 20]. Our design of utilizing a
separate encoder for each multimodal view is more flexi-
ble. As Yan et al. [29] have shown, it is sufficient to use a
smaller encoder to learn representations from larger views
of RGB frames. Feichtenhofer et al. [10] applied a smaller
CNN (e.g., a smaller number of channels) to learn motion
information and a larger one for encoding the semantics of
frames. One advantage of our design is that our architecture
also supports multiscale processing within each modality.

3. Experiments

3.1. Experimental setup

Model notation For the backbone of each view, we con-
sider four ViT variants, “Tiny”, “Small”, “Base”, and
“Large”. Their settings strictly follow the ones defined in
BERT [7] and ViT [8], i.e. number of transformer layers,
number of attention heads, hidden dimensions. For conve-
nience, each model variant is denoted with the following ab-
breviations indicating the backbone size, tubelet length, and
input modality. For example, B/2:R+S/4:S+Ti/8:F denotes
a three-view model, where a “Base”, “Small”, and “Tiny”
encoders are used to processes tokens from RGB tubelets of
sizes 16⇥16⇥2, spectrogram tubelets of sizes 16⇥16⇥4,
and optical flow tubelets of sizes 16⇥ 16⇥ 8, respectively.
Note that we omit 16 in our model abbreviations because all
our models use 16⇥ 16 as the spatial tubelet size following
ViT [8]. If we omit the modality in the notation, we assume
all views use RGB frames as the modality. All model vari-
ants use the same global encoder which follows the “Base”
architecture, except that the number of heads is set to 8 in-
stead of 12. The reason is that the hidden dimension of
the tokens should be divisible by the number of heads for
multi-head attention, and the number of hidden dimensions
across all standard transformer architectures (from “Tiny”
to “Large” [8, 23]) is divisible by 8.

Optical flow and spectrogram extraction We compute
optical flow using the FlowNet [9] algorithm. Audio spec-

Data augmentation

Random crop probability 1.0
Random flip probability 0.5
Scale jitter probability 1.0
Maximum scale 1.33
Minimum scale 0.9
Colour jitter probability 0.8
Rand augment number of layers [3] 3
Rand augment magnitude [3] 10

Regularisation

Stochastic droplayer rate [14] 0.1
Label smoothing [25] 0.1

Table 1. Data augmentation and regularization parameters.

trograms are extracted in a similar manner to [13]. All au-
dio is converted to monochannel and resampled to 16kHz.
Spectrograms are then extracted using short-term Fourier
transforms with a Hann window of 25ms with 15ms hop.
The resulting spectrogram is integrated into 64 mel-spaced
frequency bins (lower cutoff 125 Hz and upper corner fre-
quency 7500 Hz) and the squared magnitude is extracted.
This gives us mel spectrograms of 96 ⇥ 64 bins for 0.96
seconds of audio. For the entire clip, we run the above pro-
cedure in a sliding window fashion with a temporal hop of
40ms to align with RGB frame rate (25FPS). Spectrograms
are normalized to [-1, 1] before feeding into the model.

Initialization We trained two RGB-only models
B/2+S/4+Ti/8 and L/2+B/4+S/8+Ti/16 on WTS [24] and
use them to initialize multimodal models. Optical flow
images have two input channels and spectrogram images
only have one so the initial tubelet embedding layer has a
different shape than the pretrained RGB models. To address
this issue, we simply average the kernel of the embedding
layer along the input channel axis and perform tiling.

Training and inference All models are trained on 64
frames with a temporal stride of 1. In Epic-Kitchens, each
video is labeled with a “verb” and a “noun”. We predict
both categories using a single network with two “heads”.
We train all our models for 50 epochs with a global batch
size of 128 using synchronous SGD with momentum of 0.9
following a cosine learning rate schedule with a linear warm
up. The initial learning rates for all models are set to 0.4.
We follow [1, 6, 29] and apply the same data augmenta-
tion and regularization schemes [3,14,25], which were used
by [26] to train vision transformers more effectively. For
spectrograms we use SpecAugment [21] with a max time
mask length of 96 frames and max frequency mask length of
16 bins following MBT [20]. See Table 1 for detailed set-
tings. During single-model inference, we adopt the standard
evaluation protocol by averaging over four temporal crops.
To produce the final predictions from the model ensemble,
we simply average the logits produced by each model.



Pretraining datasets Top-1 Action Top-1 Noun Top-1 Verb

K400 46.7 60.5 67.8
K700 48.0 61.2 69.1
WTS 49.3 63.0 69.4

Table 2. Effects of different pretraining datasets. All models are
trained and evaluated on 224⇥ 224 crops.

Spatial resolution Top-1 Action Top-1 Noun Top-1 Verb

224p 49.3 63.0 69.4
280p 50.5 63.9 69.9
432p 52.7 66.1 71.2

Table 3. Effects of increasing spatial resolution. All models are
finetuned from a WTS-pretrained checkpoint.

3.2. Ablation study

We use a RGB-only model B/2+S/4+Ti/8 for the studies
in Table 2 and 3. We report Top-1 accuracies on Action,
Noun, and Verb classes obtained from averaging predictions
across four temporal crops. All numbers reported in this
section are from the validation set.

Effects of pretraining Table 2 presents the finetuning re-
sults from models pretrained on Kinetics 400 [15], Kinetics
700 [15], and WTS [24] datasets. Kinetics 400 and 700
consist of 230,000 and 530,000 10s video clips focusing on
human actions with each clip labeled with one of the 400
and 700 classes, respectively. WTS contains 60M videos
with only video-level labels. All three pretraining datasets
are from a different domain than Epic-Kitchens that is com-
posed of egocentric videos. Table 2 shows that it is more
beneficial to pretrain on a large-scale weakly supervised
dataset than on a smaller set of trimmed video clips.

Effects of input resolution As Table 3 shown, as spatial
resolution increases so does top-1 accuracy for nouns. Ac-
curacies for verbs are also improved and this is likely due
to the increased number of tokens that help the model better
understand motion in the scene.

Effects of combining different modalities The first two
rows in Table 4 present the Top-1 accuracies of the RGB-
only and the Flow-only models. Changing input modality of
the “Small” encoder from RGB to flow and to spectrogram
improves Top-1 accuracy on action from 52.7 to 53.4 and
53.2, respectively. Combining all three modalities gives the
best performance on action with a score of 53.6. All models
share similar FLOPs with the only difference being the ini-
tial embedding layers. RGB is the most informative modal-
ity for predicting “nouns”, there is little gain by adding flow
and audio. However, optical flow and audio provide com-
plimentary information to RGB for predicting “verbs”.

Models Top-1 Action Top-1 Noun Top-1 Verb

B/2:R+S/4:R+Ti/8:R 52.7 66.1 71.2
B/2:F+S/4:F+Ti/8:F 40.5 50.1 68.1

B/2:R+S/4:F+Ti/8:R 53.4 66.5 71.9
B/2:R+S/4:S+Ti/8:R 53.2 66.3 72.0

B/2:R+S/4:S+Ti/8:F 53.6 66.3 72.0

Table 4. Effects of combining different modalities. All models
are trained and evaluated on 432 ⇥ 432 crops. As an example
of our naming convention, B/2:R+S/4:S+Ti/8:F denotes a three-
view model, where a “Base”, “Small”, and “Tiny” encoders are
used to processes tokens from RGB tubelets of sizes 16⇥ 16⇥ 2,
spectrogram tubelets of sizes 16⇥16⇥4, and optical flow tubelets
of sizes 16⇥ 16⇥ 8, respectively.

Data split Models Top-1 Action Top-1 Noun Top-1 Verb

validation

MoViNet [18] 47.7 57.3 72.2

MeMViT [28] 48.4 60.3 71.4
Omnivore [12] 49.9 61.7 69.5
M&M-B 53.6 66.3 72.0

test [5] 48.7 59.2 70.6

M&M-B 49.6 63.7 68.0

Table 5. Comparisons to state-of-the-art. M&M-B refers to our
three-view multimodal MTV model, B/2:R+S/4:S+Ti/8:F (no en-
sembling). The gray row is the winning entry from last year’s
challenge, which uses a 6-model ensemble. All other rows are
from a single-model evaluation.

3.3. Comparison to the state-of-the-art

Table 5 compares our best single model to the previous
state-of-the-art on the Epic-Kitchens dataset and last year’s
winning entry of the challenge. Our M&M-B model im-
proves over the previous state-of-the-art [12] by a margin
of 3.7% in Top-1 action accuracy and also outperforms last
year’s winning method [5], which uses a 6-model ensemble.

3.4. Model ensemble

To create the final submission, we generated two model
ensembles one for predicting the verbs and the other for
nouns. Table 6 lists all individual models used in this chal-
lenge and their corresponding performance on the valida-
tion set. Table 7 shows which models we used for verbs and
nouns. Using this model ensembling strategy, we improve
the Top-1 action accuracy from 53.6 (from our single best
model) to 56.9 on the validation set. Our final submission
scored 52.8 on Epic-Kitchens test set, which is 4.1% higher
than last year’s winning entry.

4. Conclusions

In this report, we present the approach behind our sub-
mission to the 2022 Epic-Kitchens Action Recognition
challenge. We proposed M&M, a transformer backbone



Model indices Model variants Pretraining datasets Resolution Top-1 Action Top-1 Noun Top-1 Verb

0 B/2:R+S/4:R+Ti/8:F WTS ! K700 432p 53.4 66.4 71.8
1 B/2:R+S/4:F+Ti/8:R WTS ! K700 432p 53.4 66.5 71.9
2 L/2:R+B/4:F+S/8:F+Ti/16:R WTS ! K700 320p 53.0 66.7 71.1
3 L/2:R+B/4:R+S/8:R+Ti/16:R WTS 352p 52.6 67.2 69.8
4 B/2:F+S/4:F+Ti/8:F WTS ! K700 432p 40.5 50.1 68.1
5 B/2:R+S/4:R+Ti/8:R (128⇥1) WTS 304p 52.4 65.6 71.3
6 L/2:F+B/4:F+S/8:F+Ti/16:F WTS ! K700 352p 40.9 50.6 67.2
7 L/2:R+B/4:F+S/8:S+Ti/16:R WTS 320p 53.6 67.0 71.7
8 B/2:R+S/4:S+Ti/8:F WTS 432p 53.6 66.3 72.0
9 B/2:R+S/4:S+Ti/8:R WTS 432p 53.2 66.3 72.0
10 B/2:R+S/4:R+Ti/8:S WTS 432p 53.4 66.6 72.0

Table 6. All model variants used in our final ensemble and their respective performance on the validation set. WTS!K700 denotes a
pretraining strategy where we first pretrain the model on WTS and then finetune on Kinetics 700. Model 5 is trained and evaluated on 128
frames instead of 64 for all other models.

Model indices Top-1 Action (val/test) Top-1 Noun Top-1 Verb

0,1,2,3,5,6,7,8,9,10 56.9/52.8 69.2/66.2
4,5,6,7,8,9,10 75.0/70.9

Table 7. Results from our final model ensemble on both vali-
dation/test sets. Different sets of models are used for predicting
nouns and verbs.

that learns a multimodal and multiscale representation of
videos. Our final submission is an ensemble of M&M mod-
els with varying backbone sizes and modality mixes. It
scored 52.8 in top-1 accuracy on action classes on the test
set, which is 4.1% higher than the last year’s winner.
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Abstract

This report presents the technical details of our submis-

sion on Epic-Kitchens Action Recognition Challenge 2022

from Oxford+Bristol team. We propose a novel visual-audio

transformer model to use the temporal context from the clips

outside the action boundaries to boost the performance of

the recognition performance. We also introduce a temporal

relative localization loss, which enables the model to learn

the temporal order of the clip sequences without additional

manual labels. For the challenge, we aggregate predictions

from the multiple variants of this model, along with the lan-

guage model to utilize the temporal context within the out-

put modality. Our final submission obtains 50.6% of top-1

action accuracy on the challenge test set, ranked as 2nd on

the leaderboard only using publicly available data.

1. Introduction

Video action recognition is the task of understanding
what the person is doing within a given temporal bound-
ary. It is one of the fundamental tasks of video understand-
ing and researchers have introduced a plethora of works
on diverse datasets such as Kinetics [4]. Epic-kitchens [2]
is recently gaining its popularity as the largest egocentric
video dataset with the development of VR / AR technolo-
gies. However, there are additional particular challenges on
this dataset including: (1) the actions are fine-grained (e.g.
put spoon), (ii) rapid movement of RGB frames due to the
egocentric recording condition, and (3) some actions are rel-
atively short, often less than a second. In order to improve
the performance, we can employ temporal context by en-
coding information about the past and future of the ongoing
actions. For example, in Figure 1, we can easily infer that
the action ‘pour water in kettle’ will happen between ‘open
kettle’ and ‘close kettle’. The objects are sometimes per-
sistent within certain time intervals and there might be the
possible relationships between verbs as well.

There have been a few works which consider the tem-
poral context to improve the recognition performance of an
ongoing action. [9] utilizes the clips outside the boundaries

of the action of interest, but only considers visual modal-
ity and does not employ other modalities such as audio or
language. The closest work of ours is [5] which leverages
visual, audio and language within a sequence of actions.
However, it requires the temporal boundaries of the neigh-
bouring actions in an untrimmed video, which are not avail-
able in real-world scenarios. Our work does not require
any temporal information of actions other than the action
of interest, while effectively learn the relations between the
neighbouring clips.

In this work, we propose a novel multimodal framework
which uses the temporal context within visual, audio and
language modalities to improve recognition performance.
We also propose temporal relative localization loss which
enables the network to learn the temporal order of clip se-
quences without additional supervision. Inspired by [7],
we also show that this objective helps the model to learn the
temporal relationships between clips effectively.

2. Model

In this report, we define the temporal context as the video
clips outside the action (segment) of interest, including clips
that precede and succeed the action in an untrimmed video.
We propose a model which utilizes the visual features and
corresponding audio features of these clips as well as the
features from the action of interest to improve the recogni-
tion performance. The N clips are equally sampled within
certain time period t sec both before and after the ongo-
ing action. Visual & auditory features of these clips are in-
gested into the multimodal transformer with the features in-
side the ongoing action and produces the ‘verb’ and ‘noun’
classes. We also introduce temporal relative localization

loss which encourages the transformer to learn temporal re-
lations within the clips, both in visual and audio.

In addition to using the temporal context in data stream,
we also use the temporal context within the labels of the
untrimmed video by employing the language model which
is first introduced in [5]. The final submission is made by
applying ensemble of different models by varying the time
t the number of sampled clips N within this context which
is explained in Section 5. Please refer to Figure 2 for the
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Figure 1. Example of temporal context. Prediction of ’pour water in kettle’ is improved by referring to the nearby clips which contain the
actions of ’open kettle’ and ’close kettle’.

detailed architecture.

2.1. Visual-audio transformer

Let X̃T = [XT�N , · · · , XT+N ] be the video clips
centered at the current segment at timestamp T within
the ‘window’ size of 2N + 1. XT is the clip randomly
sampled within the temporal boundary of ongoing action,
whereas [XT�N , · · · , XT�1] are N clips equally sampled
along the time axis from the t sec before the action and
[XT+1, · · · , XT+N ] are clips from the t sec after the ac-
tion. Let ṼT = [VT�N , · · · , VT+N ] be the visual inputs
of X̃T and ÃT = [AT�N , · · · , AT+N ] are corresponding
audio inputs.

Encoding Layer Visual and audio encoding layer project
ṼT and ÃT to D-dimensional vectors which serve as inputs
to the transformer. Visual-audio transformer then learns the
relations between these features and aggregates the tempo-
ral context between the clips both inside and outside the
action of interest. Since the self-attention operations are
permutation-invariant, we add modality-invariant positional
embeddings to the encoder outputs to make use of the tem-
poral order of feature sequence. Two modality embed-
dings mv,ma are also added to the encoder outputs respec-
tively to discriminate between visual and audio tokens. Two
[CLS] tokens, both for verb and noun, are injected to the
transformer for classifying the action.

In addition to the positional and modality embedding,
we introduce center embedding which allows the network
to know the action of interest. We add this learnable vec-
tor to visual & audio encodings from the action of interest
and also add to two [CLS] tokens to ensure that the net-
work needs to classify the indicated action. We observe that
without the center embedding, the network does not know
which clip it needs to focus on, and the performance drops
drastically.

Transformer and classifier We use a transformer encoder
to learn the relations between visual and audio inputs.

Transformer blocks share weights to reduce the computa-
tional overhead. Output from the [CLS] tokens are fed into
the two-head classifier to predict the action.

2.2. Loss function

During training, we use a standard cross-entropy loss Lce

for classifying action at the center of our temporal context
using the output of the classifier from the [CLS] tokens. In
addition, we introduce a novel temporal relative localiza-

tion loss in order to learn the temporal information without
additional manual annotation.

Temporal relative localization loss Inspired by [7], we
densely sample the feature pairs from the transformer out-
puts and ask the network to predict the relative distance be-
tween two features. Let the {vi} be the 2N +1 transformer
outputs from the visual inputs and {ai} be the correspond-
ing audio outputs. (i = T �N, · · · , T +N) We randomly
sample a set of m (e.g. 32) pairs B from these features and
concatenate them and put into small MLP ft(·) to produce
the normalized relative distance between two vectors. For
each randomly sampled pair {ei, ej} 2 B, we can calculate
a relative distance di,j by

di,j =
|i� j|
2N + 1

(1)

and compute the L1 loss between the output of ft(·) and
relative distance di,j :

Lloc =
X

{ei,ej}2B

|ft(ei � ej)� di,j | (2)

where � indicates concatenation.
The final objective is the weighted sum of two losses

with a hyperparameter �:

Ltotal = Lce + �Lloc (3)

We investigate the effect of � in Section 4.
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Figure 2. Model overview. The figure illustrates the case when the input is 2N+1 = 5 clips at time T . Blue region is the action of interest.

2.3. Language model

We apply the language model to leverage the tempo-
ral context between action labels in untrimmed video. We
adopt the Masked Language Model (MLM) introduced in
[5], which is trained only with the labels of Epic-kitchens-
100 train set. Please refer to [5] for more detailed informa-
tion. We use the released model and inference code. 1

3. Experiments

In this section, we explain the details of feature extrac-
tion, model architecture and training hyperparameters.

Feature extraction We utilize two variants of visual en-
coder, MotionformerHR [8] and Omnivore [3]. Both works
provide the model that are finetuned with Epic-kitchens-100
so we adopt their model and inference code. The former
produces Dv = 768 dimensional features while the latter
produces Dv = 1024 dimensional features. For audio en-
coder, we use the Auditory Slow-Fast [6] pretrained with
VGGSound [1] and finetuned with Epic-kitchens train set.
The model takes a 2 sec of audio and produces a Da = 2304
dimensional vector.

Model architecture Both visual and audio encoding lay-
ers project the input features into 512-dimensional vectors.
The visual-audio transformer consists of 4 self-attention
encoder layer which share weights to each other. Each
layer has 8 attention heads and a hidden unit dimension
of 512. We apply the dropout with p = 0.5 on encoding
layer and p = 0.1 within the transformer. All of the addi-
tional embeddings, including positional embedding, modal-
ity embedding, center embedding and [CLS] tokens, are

1https://github.com/ekazakos/MTCN

512-dimensional learnable vectors. The architecture of lan-
guage model is identical to the model introduced in [5].

Train/Test details The model is trained with LAMB opti-
mizer [10] with an initial learning rate 0.005. All models
are trained for 100 epochs and the learning rate is reduced
by a factor of 0.1 at 50 and 75 epochs. We choose the model
which provides the best top-1 action accuracy on validation
set. We use a batch size of 32 and a weight decay of 0.0005.
Mixup [11] with ↵ = 0.2 is used as a data augmentation.

During training, we randomly sample 1 clips per action
of interest and N clips within t sec both before and after the
action uniformly spaced along time axis. For testing, we
sample 10 clips equally sampled within the action segment
and average 10 corresponding predictions as a final predic-
tion.

4. Results

Table 1 shows the performance of the model by varying
the temporal context t and the number of sampled clips N .
We also compare the models which use two different visual
encoders, MotionformerHR [8] and Omnivore [3]. All of
the results are measured in Epic-kitchens validation set ex-
cept the “challenge submission” which the performance are
computed on challenge test set.

In general, MotionformerHR performs slightly better
than Omnivore in our implementation. Using t = 10 sec
and N = 10 clips performs best regardless of the visual
encoder. The ensemble method boosts the performance by
3% on top-1 action accuracy from the best single model.
Applying the language model on top of these action scores
results in 0.2% of extra gain on top-1 action accuracy.

Ablation Studies Table 2 shows the influence of temporal
relative localization loss by varying the value of � in Equa-

https://github.com/ekazakos/MTCN


Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Visual encoder t (sec) N Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

MformerHR [8]

5 5 71.37 62.79 50.58 91.58 83.77 68.51 65.26 50.80 40.38 42.73 39.32 27.99
5 10 71.26 62.90 50.74 90.97 82.94 67.90 66.57 50.99 40.66 42.05 37.74 27.92
5 20 70.51 62.19 49.95 90.60 82.02 66.24 66.20 51.08 40.09 41.53 37.37 26.73

10 10 71.77 63.55 51.38 91.32 83.83 68.43 65.73 51.55 40.56 44.32 39.95 28.76
10 20 71.34 63.11 50.73 90.88 83.41 68.15 65.82 51.64 40.56 42.84 38.74 27.15
50 10 70.43 62.40 49.92 91.32 83.92 67.79 64.41 51.83 39.91 42.84 38.58 27.86
50 20 71.30 63.21 50.85 91.30 83.69 68.03 65.73 53.05 40.66 43.07 39.37 28.57
50 50 71.47 63.66 51.27 91.09 83.63 68.16 65.73 51.27 40.09 42.39 39.26 27.73

Omnivore [3]

5 5 71.59 60.04 49.07 91.49 80.58 65.67 66.39 49.39 39.62 45.80 33.84 26.38
5 10 71.94 59.13 48.69 91.20 80.42 65.53 64.41 48.45 37.56 43.47 32.58 24.96
5 20 71.00 59.14 48.17 90.77 79.60 65.02 65.92 49.86 39.25 43.69 32.84 24.61

10 10 71.82 60.17 49.01 91.34 81.19 66.30 65.54 50.23 40.28 45.40 35.63 26.34
10 20 71.69 59.70 48.79 91.13 80.44 65.72 64.88 50.33 39.62 45.00 33.05 24.70
50 10 69.90 59.80 47.59 91.07 80.88 65.23 64.23 49.95 37.93 45.06 34.63 26.41
50 20 71.09 59.75 48.38 91.20 80.93 65.69 65.92 49.30 39.34 43.81 34.21 25.83
50 50 71.45 59.46 48.55 91.01 80.63 65.88 64.79 51.46 39.72 43.52 33.26 24.73

Ensemble 74.81 65.76 54.42 92.89 85.90 72.53 69.58 55.02 43.57 46.36 40.47 30.56

Ensemble + LM 74.80 66.16 54.61 92.85 85.88 72.55 69.39 55.31 43.66 45.51 40.84 30.47

Challenge submission 70.65 63.53 50.94 91.07 85.16 69.49 64.50 58.20 42.55 37.83 37.33 25.31

Table 1. Result table. All of experiments use the same audio encoder and model architecture. ‘Ensemble‘ and ‘Ensemble+LM‘ are results
before and after applying the language model, respectively. Please note that the performance are measured on Epic-kitchens validation set,
except the ‘challenge submission’, which reports the challenge test set results.

Top-1 Accuracy (%)

� Verb Noun Action

0 71.25 62.42 50.14
0.1 71.89 63.33 50.95
0.3 71.77 63.55 51.38

0.5 71.28 63.01 50.73

Table 2. Ablation studies on �

tion 3. The experiments are performed using N = 10 clips
within t = 10 sec and pretrained MotionformerHR is used
as a visual encoder. We prove that introducing the temporal
localization loss (� > 0) improves the recognition perfor-
mance. We also observe that � = 0.3 produces the best
result. Therefore we use this value when training our model
for our final submission.

5. Final submission

For our final submission, we incorporate Epic-kitchens
validation set in our training data. We randomly choose
1000 samples from the validation set to track the perfor-
mance and use rest of the validation set during training
stage . We ensemble 16 different models, 8 using Motion-
formerHR encoder and another 8 using Omnivore encoder
and average the softmax outputs.(See Table 1) We apply

the language model on top of this result for our final sub-
mission. Our last submission is ranked 2nd on the leader-
board. We only use publicly available datasets for training
our model.
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Abstract

In this report, we briefly introduce the technical details

of our submission to the EPIC-Kitchens-100 Action Recog-

nition Challenge 2022. Considering the characteristics of

different tasks, we design different input styles for different

tasks. We then deploy feature extraction and classification

based on several transformer models and perform a model

ensemble on them. Finally, we propose a frequency-prior

learning strategy to generate the prediction scores. Our

submission achieves an action accuracy of 40.4% on the

test set.

1. Introduction

In recent years, video analysis is one of the most popular
areas of computer vision, which has a wide range of appli-
cations in automated surveillance, human-computer inter-
action, vehicle navigation, etc. With the rapid development
of wearable cameras, such as GoPro, Google Glass, a large
number of egocentric videos are being captured and stored.
How to effectively analyze these videos becomes an impor-
tant study topic.

EPIC-Kitchens-100 [2–4] is the largest dataset in ego-
centric vision, which contains a collection of 100 hours,
20M frames, 90K actions in 700 variable-length videos,
capturing long-term unscripted activities in 45 environ-
ments, using head-mounted camera.

In this work, we separately train different models for
verb classification, noun classification, and verb-noun clas-
sification. We then perform model ensemble to get the verb
and noun prediction scores. Finally, we use the prior of the
verb-noun pair to train a probability matrix and yield the
action prediction scores.

2. Methods

2.1. Global-to-Local Image Collection

Video inputs always implicate lots of temporal informa-
tion thus benefiting the verb classification task. However,

the noun classification task doesn’t heavily rely on tempo-
ral information. We design a global-to-local image collec-
tion as inputs for the noun classification task. As shown in
Fig. 1, each mini-batch of the inputs are composed of 3 dif-
ferent images (c1 full images, c2 hand-object unions and c3
object bounding boxes):

c1 + c2 + c3 = B, c1, c2, c3 = 1, 2, ..., B (1)

B is the batch size of inputs when training. The hands
and objects bounding boxes are extracted from [8]. For the
verb classification task and verb-noun classification task,
we simply use the extracted frames as inputs.

2.2. Video Classification

In order to get effective features and precise classifica-
tion predictions from videos, we use 2 different networks,
MViT [5] and Uniformer [7], for the 3 tasks: verb classifi-
cation, noun classification and verb-noun classification.

To take advantage of complementary predictions from
different models, we ensemble all the models and calculate
the final verb/noun prediction scores by averaging the pre-
diction scores from each model.

2.3. Frequency-Prior Learning

In Epic-Kithchens-100 dataset, there are 97 classes of
verbs and 200 classes of nouns, thus there are theoretical
20580 classes of actions, which is much greater than the
real class number 4053. In fact, most of actions will never
occurs in the real scene, e.g. cook clothes, wear potatoes.
Denote Sverb 2 [0, 1]v⇥1 as the scores of verbs predicted by
the network, and Snoun 2 [0, 1]n⇥1 as the scores of nouns
predicted by the network, where v, n is the number of verb
class and noun class. Given the score Sverb(i) of the i-th
classes of verb prediction, and the score Snoun(j) of the j-th
classes of noun prediction. We compute the score of each
class of action by:

Saction(i, j) = M(i, j)⇥Sverb(i)⇥ Snoun(j),

i = 1, 2, ..., v,j = 1, 2, ..., n
(2)



Figure 1. An illustration of the global-to-local image collection.

Table 1. Action recognition results on test set.

Model
Overall Unseen Participants Tail Classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Ensemble 66.1 54.0 40.4 89.1 79.1 59.6 59.4 45.6 33.1 34.5 28.5 10.5

where M 2 R+v⇥n is the probability matrix, which con-
tains learnable parameters to calculate the probability of
each verb-noun combination. We simply initial M with
the count C 2 Nv⇥n of verb-noun pairs in training anno-
tations and validation annotations, and utilize cross-entropy
loss to calculate the cost between the action prediction and
the ground-truth. The proposed scheme can be summarized
in Algorithm 1:

Algorithm 1: Frequency-Prior Learning Scheme
Input: Sverb 2 [0, 1]v⇥1, Snoun 2 [0, 1]n⇥1,

C 2 Nv⇥n.
1 Initialization: Saction,M SverbS>

noun,C ⇤E,
where E ⇠ U(1� 1/

p
v + n, 1 + 1/

p
v + n) is a

random matrix, and U represents the uniform
distribution.

2 for epoch in 1 : max epoch do

3 M = Relu(M).
4 Saction = M ⇤ Saction.
5 L = L(Sgt

action,Saction), where L is the
cross-entropy loss function.

6 Update M using AdamW optimizer.
Output: Saction 2 Rv⇥n

3. Experiments

Video Classification Details. We use MViT and Uni-
former for verb classification and noun classification. The
MViT model uses MViT-B architecture in [5], and the
model is pretrained on Kinetics-600 [1]. The Uniformer
model uses UniFormer-B architecture in [7], and the model
is pretrained on Kinetics-400 [6]. We use only MViT for
verb-noun classification, and the model is pretrained on the
verb classification task.

At the training stage, we firstly use random short side
scale jittering, random crop, random horizontal flipping,
and mixup [9] with ↵ = 0.8 as data augmentation. The res-

olution of inputs is 320, and the temporal sampling is 32⇥2.
We train both MViT and Uniformer using the AdamW opti-
mizer with an initial learning rate of 1⇥ 10�4 and a weight
decay of 5⇥10�2. We also use a cosine learning rate sched-
ule when training. In the verb classification task, we train
the MViT model for 50 epochs with a batch size of 32, and
train the Uniformer model for 40 epochs with a batch size
of 48. In the noun classification task, we train the MVIT
model for 35 epochs with a batch size of 32, and train the
Uniformer model for 70 epochs with a batch size of 48. In
the verb-noun classification task, we train the MViT model
for 25 epochs with a batch size of 32.

At the testing stage, we sample 10 clips consisting 32
frames. For each frame, 3 spatial crops are generated. That
is, we take 10⇥ 3 views from each video.

Frequency-Prior Learning. To simplify the training,
we only train the network on the validation set. We train the
layer using the AdamW optimizer with an initial learning
rate of 1 ⇥ 10�2 and a weight decay of 5 ⇥ 10�4. The
training procedure last for 2 epochs with a batch size of 64.

Results We achieve an action recognition top1-accuracy
of 40.4%, and perform well with unseen participants. Ta-
ble 1 shows the reported results on all metrics.

4. Conclusion

This report presents our solution for the EPIC-Kitchens-
100 action recognition challenge. To address the problem,
we have designed a global-to-local image collection as in-
puts to promote the noun classification task. We simultane-
ously trained three networks for noun classification, verb
classification and verb-noun classification tasks, and per-
form model ensemble on trained models. To make bet-
ter use of the prior information, we have also proposed a
frequency-prior learning strategy to calculate the probabil-
ity matrix for action classification prediction. We finally
achieve a good rank of action recognition accuracy on the
leaderboard.
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Abstract

In this report, we describe the technical details of our

submission to the EPIC-Kitchens Action Anticipation Chal-

lenge 2022. In this competition, we develop the following

two approaches. 1) Anticipation Time Knowledge Distilla-

tion using the soft labels learned by the teacher model as

knowledge to guide the student network to learn the infor-

mation of anticipation time; 2) Verb-Noun Relation Module

for building the relationship between verbs and nouns. Our

method achieves state of the art results on the test set of

EPIC-Kitchens Action Anticipation Challenge 2022.

1. Introduction
EPIC-KITCHENS is a large annotated egocentric dataset

[1, 2]. Action anticipation is an important task in EPIC-
KITCHENS.

We summarize our main contributions as follows:
1) Aiming at the problem that the missing information of

anticipation time affects the performance of egocentric ac-
tion anticipation, we propose Anticipation Time Knowledge
Distillation to distill the information of anticipation time.

2) Because of the lack of consideration of the relation-
ship between verbs and nouns in the existing research work
on Egocentric Action Anticipation, we propose a verb-noun
relationship interaction module to model the relationship
between verbs and nouns.

3) Our approaches show superior results on EPIC-
KITCHENS-100.

2. Our approach
2.1. Base Model

We use Causal Transformer Decoder (like AVT-h)[5] as
base model. We use a 4-head, 4-layer model as our baseline.

2.2. Anticipation Time Knowledge Distillation
The temporal gap between the past observations and the

future action (Anticipation Time )[4, 12] will result in miss-
*Corresponding author.
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Figure 1. Student Model.

ing information. To solve the problem that the missing
information of anticipation time, we propose a knowledge
distillation method to distill the information of anticipation
time. Fig. 1 shows the student model. We initialize the
future video embedding with learnable parameter. Fig. 2
shows the overview of Anticipation Time Knowledge Dis-
tillation. The input of teacher model is full video and the
input of student model is the concatenation of the observed
video and future video embedding. In teacher model, if the
anticipation time clip (frame) don’t have label, we use the
label of the closest labeled clip (frame) as its label. The
teacher model can distill the soft label of anticipation time
to student model.

Finally, we use a multi-scale block to improve the perfor-

1
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Figure 2. Overview of Anticipation Time Knowledge Distillation.

mance. Fig. 3 shows the architecture of student model with
multi-scale block. Fig. 4 shows the details of multi-scale
block.
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Figure 3. Student model with multi-scale block .
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Figure 4. Multi-scale Block .

2.3. Verb-Noun Relation Module
Inspired by [10] and [11], we propose a verb-noun re-

lationship interaction module to model the relationship be-
tween verbs and nouns. The verb-noun relation interaction
module guides the features of the nouns interacting with the
wearer in the observed videos to represent the features of
the nouns interacting with the wearer in the future through
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Figure 5. Overview of Verb-Noun Relation Module.

the features of the predicted future verbs. Fig. 5 shows the
overview of Verb-Noun relation module.

Same as Anticipation Time Knowledge Distillation, if
the clip (frame) don’t have label, we use the label of the
closest labeled clip (frame) as its label.

Finally, we use knowledge distillation to improve the
performance. The input of teacher model’s verb branch is
the full video and the input of teacher model’s noun branch
is only the observed video.

2.4. Feature Extraction
We use some action recognition models as backbone to

extract features.
The backbones as follow:

Model A SlowFast 16⇥8, R101+NL[3], predicting verb
and noun
Model B SlowFast 8⇥8, R101[3], predicting verb and noun
Model C TSN(BNInception)[9, 4]
Model D Mformer-L[7], with temporal stride 4
Model E Mformer-HR[7], with temporal stride 8
Model F Mformer-HR[7], with temporal stride 4
Model G SlowFast 16⇥8, R101+NL[3], predicting verb,
noun and action
Model H SlowFast 8⇥8, R101[3], predicting verb, noun
and action

2.5. Ensemble
We use an ensemble of a set of 10 models as final result

for testing set.

3. Experiments
3.1. Implementation Details

We train the networks using AdamW[6], using a batch
size of 128, label smoothing[8] of 0.4, an l2 weight decay
of 5e � 4, and an initial learning rate of 1e � 4. The max-
imum number of training iterations is set to 300 epochs. A
cosine annealing with warm up restart schedule (20 cycles)
is used. The cycles is set to 15 epochs with 1 epochs of lin-
ear warmup. All 10 models which we use an ensemble for
testing set are trained on the same hyper parameters with
same random seed.

2



Table 1. Results of Ablation Studies(Anticipation Time Knowl-
edge Distillation).

method kd multi-scale backbone backbone(teacher) verb noun action
base model F \ 32 32.3 15.9
ATKD F \ 31.2 34.6 16.7
ATKD X F F 32.2 35.3 17.3
ATKD X X F F 31.7 36.4 18.1
ATKD X X F B 33.7 36.3 19.1
ATKD X X F B+F(average soft label) 36.5 36.8 18.7

Table 2. Results of Ablation Studies(Verb-Noun Relation Mod-
ule).

method backbone backbone(teacher) verb noun action
base model F \ 32 32.3 15.9
VNRM(w/o kd) F \ 33.9 34.7 16.8
VNRM F F 31.7 37 17.5
VNRM F B 34.7 38.4 18.7
VNRM F B+F(avreage soft label) 32.9 39.7 19.2

Table 3. 10 model for ensemble.
# method backbone backbone(teacher) verb noun action
1 base model C \ 27.1 27.4 12.9
2 ATKD F B 33.7 36.3 19.1
3 ATKD E E 31.5 35.8 17.7
4 ATKD A A 32.6 34.6 17
5 ATKD B B 32.6 35.4 16.9

6 ATKD F \ 31.2 34.6 16.7 only student model
w/o multi-scale

7 VNRM G G 29.6 36 16.3
8 VNRM H H 33.1 34.4 15.9
9 VNRM D B+F(average soft label) 31.7 38.2 17.1

10 VNRM F B+F(average soft label) 32.9 39.7 19.2
ensemble ensemble \ \ 41 44.2 22.7

Table 4. Action Anticipation results on test set.
Overall Unseen Tail

Mean Top-5 Recall Mean Top-5 Recall Mean Top-5 Recall
Verb Noun Act. Verb Noun Act. Verb Noun Act.

Ensemble 37.91 41.71 20.43 27.94 37.07 18.27 32.43 36.09 17.11

3.2. Results
The result of ablation study can be found in Table 1 and

Table 2. The result of 10 models for ensemble is shown in
Table 3.

The final ensemble result on test set are presented in Ta-
ble 4. Our algorithm achieved the best performance.

4. Conclusion
In this paper, we propose two novel methods. The val-

idation and testing results show that our proposed method
can achieve excellent performance.
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Abstract

In this report, we describe the technical details of our
submission for the EPIC-Kitchen-100 action anticipation
challenge. Our modelings, the higher-order recurrent
space-time transformer and the message-passing neural
network with edge learning, are both recurrent-based ar-
chitectures which observe only 2.5 seconds inference con-
text to form the action anticipation prediction. By averag-
ing the prediction scores from a set of models compiled with
our proposed training pipeline, we achieved strong perfor-
mance on the test set, which is 19.61% overall mean top-5
recall, recorded as second place on the public leaderboard.

1. Introduction
Forecasting future events based on evidence of current

conditions is an innate skill of human beings, and key for
predicting the outcome of any decision making. Antici-
pating ”what will happen next?” is a natural skill for hu-
man beings, but not for machines. In computer vision, the
same question arises in video action anticipation. It is a
long standing and widely studied problem to recognize the
human actions given a video clip. However, to further pre-
dict the future action based on the given observations has
just attracted increasing interests in recent years. Unlike
action recognition, in action anticipation, the target action
only stays in causal relation to the signal in the sub-clip, but
is not directly observable. It must be forecast as one pos-
sible consequence of the already observed video context.
EPIC-Kitchen-100 [2] is the largest dataset containing the
definition of the video action anticipation task. It consid-
ers 97 verbs and 300 nouns. Unique verb-noun pairs define
3807 action categories. The dataset is provided with the
pre-extracted RGB, optical flow, object bounding box, and

object mask modalities in this competition.
We participated in the video action anticipation chal-

lenge by considering two different proposed models:

• Higher-Order Recurrent Space-Time Transformer [8]:
A recurrent network with space-time decomposition
attention and higher order recurrent designs.

• Message-Passing Neural Network with Edge Learn-
ing [9]: A recurrent network based on the message-
passing framework. It models the sequential structure
as a graph with a set of vertices and edges and learns
the edge connectivity by different strategies.

Both Higher-Order Recurrent Space-Time Transformer
(HORST) and Message-Passing Neural Network with
Edge Learning (MPNNEL) are recurrent architectures, and
learn the spatial-temporal dependencies in different ways.
HORST builds the n-gram temporal modeling by consider-
ing the higher-order recurrence with temporal attention and
dynamically attends the relevant spatial information by spa-
tial attention. On the other hand, MPNNEL projects the
spatial contexts of frame input from each timestep onto the
internal graph representation, and leverages the message-
passing framework to capture the temporal propagation.
MPNNEL also learns to augment the edge connectivity by
using different end-to-end learning strategies. Both mod-
elings are based on the extracted feature from 2D-CNN
frame-based backbone. The final score for this competi-
tion was deployed by late-fusion of all the training variants
from HORST and MPNNEL, and averaging the prediction
scores of individual models across different modalities.

The remaining parts of this report are organized as fol-
lows. The description of applied models is presented in Sec-
tion 2, proposed training techniques are in Section 3. The
experimental results are included in Section 4. Finally, Sec-
tion 5 contains concluding remarks of this technical report.



Figure 1. The overview HORST architecture. The HORST cell consist of a light-weighted spatial-temporal attention, and an internal
first-in first-out queue to maintain the previous states for higher-order recurrence design.

Figure 2. Left: The space-time decomposition attention used in
HORST; Right: The self-attention proposed in [10].

2. Model Architecture
We briefly introduce HORST and MPNNEL architec-

tures, the two modelings we used in this competition.

2.1. HORST Model
To exploit the effective information in space-time struc-

ture, we proposed space-time decomposition attention – a
light-weighted and computation-efficient attention, which
integrates spatial and temporal operators from separated
branches as shown in Figure 2. To define spatial and tempo-
ral branch operators, spatial filter was introduced to recog-
nize the relevant spatial information by the max and mean
pooled features of inputs:

fX (X) = sigmoid(✓X ⇤ [Xmax, Xavg] + bX ) (1)

where ⇤ is convolution, Xavg, Xmax are channel mean and
max pooled, ✓X and bX are convolution kernels and biases.

The general higher-order recurrent network [6, 7, 11] is
with the following form:

ht = f(xt,�(ht�1:t�S)), (2)

where the hidden state at time t, ht, is computed by the
cell function f on input xt and S orders states ht�1:t�S

aggregated by the function �.
The HORST cell can be viewed as instantiating � with

space-time decomposition attention and maintain the previ-
ous states ht�1:t�S in an internal queue by the first-in first
out update policy. The overall design is shown in Figure 1.
At each step t, we process the video frame by a 2D-CNN
backbone to obtain the feature map and encode it to the
intermediate representation. Such representation is served
as query and cross-reference from the historical states via
the space-time decomposition attention. The attention out-
put is then pushed to the queue while releasing the oldest
state. Cell output finally propagate to the classifier. More
details are found in [8] and we build our HORST mod-
els for this competition based on the codebase published at
https://github.com/CorcovadoMing/HORST.

2.2. MPNNEL Model
MPNNEL translates the anticipation problem into a mes-

sage passing scheme, producing a graph-structured space-
time representation. The connectivity of the graph struc-
ture is inferred from the input at each time step. The read-
out function is called when the prediction is required at
any timestep. The proposed model utilizes only multi-head
self-attention for information routing between vertices. The
overall architecture definition is illustrated in Figure 4. Note
that the resulting spatial graph is either bi-directed, when an
adjacency matrix A is provided, or else it is un-directed.

Without any prior knowledge, we assume each vertex in
the graph can be accessible by any other vertices. In this
case the scaled dot-product in the self-attention computes
the pairwise similarity of all vertices from the inputs can
be viewed as an implicit edge estimation. This can be ex-
tended by optionally providing the edge estimation explic-
itly by one of following strategies, also shown in Figure 3:

• Template Bank (TB), which forms the estimation of

https://github.com/CorcovadoMing/HORST


Figure 3. Left: The implicit edge estimation by multi-head self-attention; Middle: The augmented edge learning by outer product the class
tokens supervised by the verb and noun annotations; Right: The augmented edge learning by introducing a joint learnable template bank.

Figure 4. The overview architecture of MPNNEL. The message
function is extendable with the explicit edge estimation by differ-
ent edge learning strategies.

edge connections by soft-fusing a set of learnable tem-
plates using weights computed from the frame input.

• Class Token Projection (CTP), which performs the
outer-product of class tokens to construct the edge esti-
mation. The class tokens are supervised from provided
verb and noun labels.

More details are found in [9] and we build our MPNNEL
models for this competition based on the codebase pub-
lished at https://github.com/CorcovadoMing/
MPNNEL.

3. Model Training
In this section, we describe the 4 phases training pipeline

used to efficiently train all our models in this competition,
and also the class weightings applied in the loss function to
cope with imbalanced class distribution.

3.1. Training Phases
We trained all of our models by having them experience

four learning phases, where they are (i) warmup phase; (ii)
ordinary training; (iii) finetune; and (iv) finetune with joint
validation set. The demonstration is shown in Figure 5.

The details of different training phases are:

• Warmup Phase: The model is end-to-end trainable on
the target dataset. The model can access the actual ac-
tion frames beyond the anticipation limitation only in
this training phase.

• Ordinary Phase: The model is trained with backbone
freeze, and the action frames are not accessible in this
and following training stages.

• Finetune Phase: The model is trained with backbone
freeze, under the lower learning rate, and with the class
weightings adjusted in the loss functions.

• Finetune with joint validation set: The model is trained
with backbone freeze, under the lower learning rate,
and with the class weightings adjusted. Additionally,
the validation samples are joint together in the super-
vised learning.

The warmup phase is targeted to build a strong feature
extractor for the competition, the backbone model is able
to receive gradients and the action frames are allowed to be
observable exclusively in this phase. The ordinary phase
focus on the anticipation task and trains the HORST and

https://github.com/CorcovadoMing/MPNNEL
https://github.com/CorcovadoMing/MPNNEL


Figure 5. Demonstration of different training phase. The Backbone model is only trainable in the warmup phase and remains freeze in rest
of the phases.

MPNN architectures with the feature extractor kept frozen.
The finetune phases learn to distinguish the hard samples
and tailed cases by class weighting adjustments, also with
the validation set jointly in the last training. Every phases
are resumed from its previous step and each model training
experiences the complete learning rate scheduling.

3.2. Class Weightings
We adjusted the class weightings of the cross-entropy

loss for individual verbs, nouns, and actions during the fine-
tuning stages. The adjustment is based on the label fre-
quency summarized from the training set. Note the action
distribution defined in EPIC-Kitchen-100 is composed of
joint probability of verbs and nouns, however, the label fre-
quency of the action class could be different than the indi-
vidual frequency belonging to verbs and nouns. Therefore,
we empirically found this adjustment brings additional reg-
ularization to the model learning and results in noticeable
gains on the validation up to 4% improvements.

4. Experiments
We provide implementation details and discuss the

choices that led to our public record in the competition
leaderboard.

4.1. Implementation Details
We prepared each input modality as follow: RGB frames

are resized to 224x224 and the pixel values are scaled from
[0, 256] to [-1, 1]. The Flow modality came with the two
maps described for horizontal and vertical optical changes,
we stacked the two maps in channel dimension and resized
them to 224x224 with pixel intensity scaled to [-1, 1]. As
inspired from [3], the Obj modality is formed by summa-
rizing the object detection confidences from the officially

provided object features, and discards the location informa-
tion of the bounding boxes. Masked-RGB is the modality
which multiplies the masking, extracted from a pretrained
MaskedRCNN, with the RGB input.

The RandAugment [1] is applied for RGB, Masked-
RGB, and Flow inputs. The video clip for training and in-
ference are all sampled at 4 FPS (i.e., step 0.25s), as inher-
ited from RU-LSTM baseline [3]. Each sample contains 14
sequential frames during training from 3.5s to 0.25s before
action starts. However the last 3 frames are strictly not al-
lowed to access in this competition since the anticipation
time set to 1s. The total length of the inference context in
our models are 2.5s (observed from 3.5s to 1s).

We trained our model using batch size 32 on 4 ⇥
NVIDIA A100 GPUs. AdaBelief [13] in combination with
the look-ahead optimizer [12] is adopted. Weight decay is
set to 0.001. The learning rate is set to 1e-4 and decreased to
1e-6 for warmup and ordinary training, and 1e-5 decreased
to 1e-7 for finetune phases. The learning rate scheduling
uses FlatCosine, which keeps the initial learning rate for
the first 75% of total epochs and switches to cosine sched-
ule for the last 25% epochs (see also Figure 5). The total
epochs for warmup and ordinary training are set to 50, and
20 for finetune phases.

4.2. Individual Models

Unlike other modalities which are in an spatial-temporal
structure, the Obj modality is presented as a temporal se-
quence of frame vectors. Each such vector represents the
frame-level object scores computed from an object detec-
tion pretrained model. We modified HORST and MPNNEL
models for supporting the 1D object vector representation,
by replacing the 2D Convolution in HORST with the fully-
connected layer; and by replacing the object entities with



Table 1. Individual model performance on validation set, mea-
sured in mean top-5 action recall (MT5R) at 1s, of various modal-
ities using different modelings and backbones.

Model Modality Backbone MT5R (%)
HORST RGB Swin-B 18.42
HORST RGB ConvNeXt 17.09
MPNNEL RGB Swin-B 17.05
MPNNEL (CTP) RGB Swin-B 18.18
MPNNEL (TB) RGB Swin-B 17.05
MPNNEL RGB ConvNeXt 17.18
MPNNEL (CTP) RGB ConvNeXt 18.54
MPNNEL (TB) RGB ConvNeXt 18.09
HORST Flow Swin-B 7.95
HORST Flow ConvNeXt 7.36
HORST Flow (Snippets) Swin-B 6.61
HORST Flow (Snippets) ConvNeXt 8.06
MPNNEL Flow Swin-B -
MPNNEL (CTP) Flow Swin-B 6.66
MPNNEL (TB) Flow Swin-B -
MPNNEL Flow ConvNeXt 7.59
MPNNEL (CTP) Flow ConvNeXt 8.74
MPNNEL (TB) Flow ConvNeXt 8.18
HORST Obj None 8.72
MPNNEL Obj None 9.69
MPNNEL (CTP) Obj None 8.80
MPNNEL (TB) Obj None 8.99
HORST Masked-RGB Swin-B 12.03
HORST Masked-RGB ConvNeXt 11.30
MPNNEL Masked-RGB Swin-B 9.22
MPNNEL (CTP) Masked-RGB Swin-B 7.87
MPNNEL (TB) Masked-RGB Swin-B 9.57
MPNNEL Masked-RGB ConvNeXt 9.65
MPNNEL (CTP) Masked-RGB ConvNeXt 8.53
MPNNEL (TB) Masked-RGB ConvNeXt 10.30

Table 2. Test accuracy of model ensemble.

Model MT5R (%)
(a) HORST Family with all modalities 17.47
(b) MPNNEL Family with all modalities 18.19
(a) + (b) 19.52
(a) + (b) and weightings 1.2x on all RGB models 19.61

learnable vectors multiplied by corresponding object scores
to defined the vertices in MPNNEL. Some models apply on
Flow modality by snippets, as suggested in [3], where the
previous 5 sequential Flow features are stacked.

For all of our models we considered the Swin Trans-
former (i.e., base configuration, Swin-B) [4], and Con-
vNeXt [5] as backbones. We showed validation results of
each representative category in Table 1. Note the validation
results reported in Table 1 are before training with the joint
validation set, in order to keep the numbers meaningful.

4.3. Model Ensemble
We manually selected the strong models from each in-

dividual variant, and tried to balance between HORST and
MPNNEL instances to maintain the diversity among the en-
sembled models. Our best submission, 19.61% overall ac-
curacy, was achieved by an ensemble of in total 54 models.
Those models consisted of 30 RGB models, 10 Flow mod-
els, 8 Obj models, and 6 Masked-RGB models.

Table 2 reports on the trajectory we stepped to our high-
est score submission. Averaging the prediction scores in
the HORST family resulted in 17.47% overall test accu-
racy, and 18.19% in the MPNNEL family. Combining both
HORST and MPNNEL further improved the score signifi-
cantly, to 19.52%, indicating some degree of complemen-
tarity of the two recurrent models. We also empirically
found that emphasizing the prediction scores of all RGB
models can have additional performance gains. In our best
submission we weighted all RGB models by a factor 1.2x
higher than other modalities.

5. Conclusion
In this report, we presented the technical details of our

submission, achieving an overall 19.61% mean top-5 re-
call on the EPIC-Kitchen-100 anticipation challenge 2022.
Our method considered the Higher-Order Recurrent Space-
Time Transformer (HORST) and Message-Passing Neu-
ral Network with Edge Learning (MPNNEL) architectures,
which are both recurrent-based networks and only observed
2.5s inference context for the action anticipation. Com-
bined with the proposed training pipeline and by averaging
the prediction scores from the models trained from various
modalities, our submission recorded the second place on the
public leaderboard.

References
[1] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 4

[2] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Rescaling egocentric vision: Collection, pipeline and chal-
lenges for epic-kitchens-100. International Journal of Com-
puter Vision, 130(1):33–55, 2022. 1

[3] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person
video. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):4021–4036, 2020. 4, 5

[4] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In



Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 5

[5] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. arXiv:2201.03545, 2022. 5

[6] Rohollah Soltani and Hui Jiang. Higher order recurrent neu-
ral networks. arXiv:1605.00064, 2016. 2

[7] Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan
Kautz, and Anima Anandkumar. Convolutional tensor-train
lstm for spatio-temporal learning. In Advances in Neural
Information Processing Systems, volume 33, pages 13714–
13726, 2020. 2

[8] Tsung-Ming Tai, Giuseppe Fiameni, Cheng-Kuang Lee, and
Oswald Lanz. Higher order recurrent space-time transformer
for video action prediction. arXiv:2104.08665, 2021. 1, 2

[9] Tsung-Ming Tai, Giuseppe Fiameni, Cheng-Kuang Lee, Si-
mon See, and Oswald Lanz. Unified recurrence modeling for
video action anticipation. arXiv:2206.01009, 2022. 1, 3

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30, 2017. 2

[11] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong
Yue. Long-term forecasting using tensor-train rnns.
arXiv:1711.00073, 2017. 2

[12] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E
Hinton. Lookahead optimizer: k steps forward, 1 step back.
In NeurIPS, volume 32, 2019. 4

[13] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C.
Tatikonda, Nicha C. Dvornek, Xenophon Papademetris, and
James S. Duncan. Adabelief optimizer: Adapting stepsizes
by the belief in observed gradients. In NeurIPS, 2020. 4



LTDS: ICL-SJTU Submission to EPIC-Kitchens Action Anticipation 2022

Xiao Gu1, Yao Guo2, Zeju Li1, Jianing Qiu1, Benny Lo1, and Guang-Zhong Yang2

Imperial College London1

Shanghai Jiao Tong University2

xiao.gu17@imperial.ac.uk

Abstract

In this report, the technical details of ICL-SJTU sub-

mission to EPIC-Kitchens Action Anticipation Challenge

CVPR 2022 are presented. We considered egocentric action

anticipation as a long-tailed distribution problem entangled

with domain shift problem. The coexistence of these two

issues significantly degrades model performance in real-

world deployment, which however was overlooked in most

previous research. To participate in this challenge, we pro-

posed a novel framework, denoted as LTDS, to simulta-

neously handle long-tailed distribution and domain shifts.

Our final submission to the test server achieves 42.0% for

overall Verb, 35.7% for overall Noun, and 19.5% for overall

Action, in terms of the class-mean recall@5.

1. Introduction
Anticipating future actions from egocentric videos is an

important task for human behaviour understanding. This
is potentially beneficial to a variety of applications includ-
ing assistive robotics, virtual reality, and autonomous driv-
ing. Recently, considerable research efforts have been de-
voted to egocentric action anticipation, ranging from large-
scale dataset curation [6] to dedicated computational model
design [5, 8]. However, this real-world task is associated
with two inherent challenges, which have always been over-
looked in previous works.

On one hand, human action categories are in nature long-
tailed distributed, where a few classes account for the ma-
jority of sample classes, yet many more classes only present
a few samples. For instance, as shown in Fig. 1, one of
the most frequent daily actions in the kitchen is ”turn on

tap”, whereas other actions like ”move broccoli” may oc-
cur much less frequently. In fact, an ideal action anticipa-
tion model is expected to perform well on all action classes,
rather than get biased towards the majority classes.

On the other hand, the intentions of human actions are
highly heterogeneous, prone to large variations caused by
several factors. For different subjects, two totally different

0 5
Subj 2

05
Subj 1

Past Observation Future Action0

500

1000

1500

2000

2500

3000

3500

So
rt

ed
 C

la
ss

 In
de

x

0 2 4 6 8
Number of Sample (log(1+#))

Turn-on
Tap

Turn-on
Tap

Common Head Class

Domain-Unique Tail Class

Put-Down
Candle

Move
Broccoli

Figure 1. Illustrations of challenges associated with egocentric
action anticipation. (i) First of all, the long-tailed distribution of
the overall dataset poses challenge to achieving consistently good
performance across all the classes. (ii) Secondly, the domain shift
caused by human behaviour, camera viewpoint, scene settings, etc.
leads to significant intra-class inter-domain variations. (iii) Fur-
thermore, the coexistence issue of domain shift and long-tailed
distribution limits the occurrence of most tail classes only in spe-
cific domains, where short-cuts associated with spurious correla-
tion might be learned.

past observations may lead to the same future action cate-
gory. For example, as shown in Figure 1, for the ”turn-on

tap” action, the past observation of two different subjects
are distinct. Apart from subject behaviours, other factors in-
cluding scenarios, camera types, viewpoints may also con-
tribute to the data heterogeneity, making the domain gap a
challenging problem [2].

Although either long-tailed distribution [13] or domain
shift [11] has been investigated a lot in the existing lit-
erature, they have so far not been addressed simultane-
ously. Existing long-tailed solutions usually only consider
data from a homogeneous source, without taking domain
shifts into considerations [13]. Moreover, existing solutions
on domain generalization [11] mostly assume an identical
distribution across domains. These can hardly be directly
adopted in a real-world scenario where categorical distri-
bution is imbalanced. In fact, such combination reveals a
more challenging yet practical problem in the real world.
Typically, the long-tailed distribution leads to a large num-
ber of tail classes unique only to a few domains, where the
learned classifier may be optimized to certain short-cut de-
cision boundaries if not carefully addressed.
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Figure 2. Basic model for egocentric action anticipation.

In this report, we presented our solution, referred to as
LTDS, to effectively resolve the long-tailed distribution
(LT) along with domain shifts (DS) inherent in egocentric
action anticipation. We validated our proposed solution on
EPIC-Kitchens 100 Action Anticipation track.

2. Methods
We denote the input past observations as x 2 RT⇥Df

and the ground truth future action as y, where T refers to
the input frame number, Df the feature dimension. Addi-
tionally, we considered data from each subject at the same
time as a single domain, and the domain number is denoted
as d 2 {1, 2, ...,#domain}. Given the inference model as
g, the final prediction ŷ can be derived by g(x). Similar to
previous domain generalization works that aim to learn do-
main invariant features, we further decompose g into a fea-
ture extractor f and a head classifier h, as shown in Fig. 2.
To deal with the combined issue of long-tailed distribution
and domain shifts, our goal is to make sure that f is able to
learn domain invariant and unbiased representations.

2.1. Cross-Modality Matching to Enforce Unbiased
Representation Learning

Due to the long-tailed category distribution and domain
shifts, the domain-unique classes (mostly tail classes) may
lead to spurious correlation between domain-specific and
class-specific features. This would unfortunately lead to
deriving biased representations. To tackle this, we lever-
aged external knowledge, word semantic embeddings s 2
RC⇥Ds , to facilitate unbiased representation learning.

Instead of directly utilizing z, as shown in Figure 3, we
apply another multi-layer perceptron (MLP) to non-linear
project z to e [1], and then utilize contrastive loss with large
margin penalty to enforce the alignment between visual fea-
ture and semantic embeddings by Eq (1) as below,

Lcm=�log
e(e

|
i syi�↵)/⌧

e(e
|
i syi�↵)/⌧+

P
j 6=yi

ee
|
i sj/⌧

, (1)

where ↵ is the margin penalty and ⌧ is a scale constant.

2.2. Prototype Learning to Tackle Domain Shifts
To further reduce the domain shifts for domain-invariant

categorical features, we build domain-specific categorical
prototype per domain, denoted as µm for domain m. To

7XUQ�RQ�7DS

:RUG�
(PEHGGLQJV

)HDWXUH�
([WUDFWRU

௖௠

0/3

݂
9LVXDO�5HSUHVHQWDWLRQV 3URWRW\SH

5HSHO

$WWUDFW

௣௥௢௧௢

૚ࣆ

૛ࣆ

૜ࣆ

«

Figure 3. Illustration of cross-modality matching and cross-
domain prototype matching. The feature z is projected to e by a
MLP layer, and subsequently LCM is leveraged to perform cross-
modality matching, thus ensuring learning unbiased representa-
tions. Furthermore, to tackle domain shifts, we build prototype
per domain in an online manner, and fill those missing entries with
their corresponding semantic features. Then, Lproto is applied to
align each visual feature to the visual prototype of other domains.

deal with the missing classes in each domain, those cor-
responding entries are filled with their corresponding se-
mantic embeddings. For those seen classes, we update their
value in a online manner as shown in Eq (2),

µm
c |t+1 = ↵

1

|⇤m
c |

X

yi=c,
di=m

em
i + (1 � ↵)µm

c |t, (2)

where |⇤m
c | refers to the number of samples belonging to

class c domain m in each batch.
During training, we align the feature of each sample to

the prototype of other domains (m 6= di) by contrastive loss
with large-margin penalty as in Eq (3).
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It should be noted that to aovid memory issues during
the computation, we randomly selected the available do-
mains in each training batch to perform the cross-domain
alignment.

2.3. Two-Stage Training to Promote Tail Perfor-
mance

To further improve the performance on tail classes, we
incorporate two-stage training [9] into the whole training
procedure. With the same cross entropy loss as in Eq (4),
in the first stage, we follow the original long-tailed distri-
bution. Subsequently, in the second stage, we apply class
reweighting to derive a balanced distribution, and then per-
form optimization only on the head classifier h with the
same Lcls loss.

Lcls = CE(ŷ, y). (4)

3. Experiments and Results
The whole framework was deployed with Pytorch on

RTX 3090. The optimization was based on SGD (lr 0.01,



Table 1. Our results on validation set using all modalities
(RGB+Flow+Obj). The metrics used are the % class-mean re-
call@5 for overall, unseen and tail splits, in terms of Verb, Noun
and Action.

Input Timestep Overall Unseen Kitchen Tail Classes

Verb Noun Act Verb Noun Act Verb Noun Act

21.0s 1.0s 38.3 34.8 17.0 33.6 24.0 13.2 38.7 32.9 16.4
11.0s 0.5s 34.5 35.5 17.5 23.1 25.0 14.0 33.1 33.3 16.7
5.5s 0.25s 35.4 34.6 17.2 22.5 24.1 14.3 34.2 31.2 16.4
3.5s 0.2s 36.6 34.5 17.0 29.8 21.0 14.4 35.7 32.0 16.3

LTDS 41.1 37.0 19.5 34.0 27.8 15.4 40.1 34.2 18.8

momentum 0.9), with learning rate decayed by 0.5 per 10
epochs. We set the milestone for second stage training as
epoch 25. The TransAction architecture proposed in our
previous work [8] was utilized as the backbone, with the
same input feature from [4]. In practice, we applied GloVe
as the semantic embedding feature and set the margin ↵
value as 0.1. Below, we present our detailed results on the
validation set, as well as our submission to the test server.

3.1. Results on Validation Set
We train our model on four settings with varied input

time and time step, as listed in Table1. The final version en-
sembled from these four models is denoted as LTDS. The
results of each individual model and the final model are pre-
sented in Table 1.

In addition, we compared our results on the validation
set with state-of-the-art methods, including RULSTM [4],
AVT [5], Panasonic [3], and DCR [12], as presented in the
Val split of Table 2. The results demonstrate the overall
superior performance of our method compared to others.

3.2. Results on the Test Set
3.2.1 Trained on training set only

Meanwhile, we also compared the performance of these
methods on the testing set when trained only on the training
set, as shown in upper part of the test split in Table 2. As
shown in Table 2, our method outperforms other state-of-
the-art methods in most cases.

3.2.2 Final test server submission

To submit the final result to submission, we made an en-
semble prediction as follows.

We trained our LTDS with train+val set, and also aggre-
gate result from AVT++. This leads to our version LTDS+
V1. On top of LTDS+ V1, we made additional ensemble to
improve the performance of Action. We replaced the RGB
feature with TSM provided by [12], and also incorporated
the result from [12]. This leads to the version LTDS+ V2.
We compared the performance in the lower part of the test

Table 2. Comparison of results on val and test sets using all modal-
ities (RGB+Flow+Obj). The metrics used are the % class-mean
recall@5 for overall, unseen and tail splits, in terms of Verb, Noun
and Action.

Split Method Overall Unseen Kitchen Tail Classes

Verb Noun Act Verb Noun Act Verb Noun Act

Va
l

RULSTM [2] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
AVT+ [5] 28.2 32.0 15.9 29.5 23.9 11.9 21.1 25.8 14.1
Panasonic [3] 32.5 36.4 18.3 32.9 26.9 15.4 26.5 31.4 17.1
DCR [12] - - 18.3 - - 14.7 - - 15.8
LTDS 41.1 37.0 19.5 34.0 27.8 15.4 40.1 34.2 18.8

Te
st

RULSTM [2] 25.3 26.7 11.2 19.4 26.9 9.7 17.6 16.0 7.9
AVT+ [5] 25.6 28.8 12.6 20.9 22.3 8.8 19.0 22.0 10.1
TempAgg [10] 21.8 30.6 12.6 17.9 27.0 10.5 13.6 20.6 8.9
TransAction [8] 36.2 32.2 13.4 27.6 24.2 10.1 32.1 29.9 11.9
Panasonic [3] 30.4 33.5 14.8 21.1 27.1 10.2 24.6 27.5 12.7
LTDS 42.3 34.6 17.0 33.4 25.9 12.8 42.5 31.4 15.6
AVT++ [5] 26.7 32.3 16.7 21.0 27.6 12.9 19.3 24.0 13.8
DCR⇤ [12] 29.9 30.4 17.4 25.1 26.1 14.2 24.6 23.7 14.3
LTDS+ V1 42.0 35.7 18.9 33.4 26.8 15.2 41.0 33.2 16.4
LTDS+ V2 - - 19.5 - - 15.9 - - 16.9

⇤Ensemble with AVT++

Table 3. Results of model/modality-agnostic effectiveness on val-
idation set using different modals and single-modalities. The met-
rics used are the % class-mean recall@5 for overall, unseen and
tail splits, in terms of Verb, Noun and Action.

Modal Method Overall

Verb Noun Act

R
G

B

TempAgg [10] 24.2 29.8 13.0
,!+LTDS 29.1 32.0 13.8

TransAction [8] 28.3 30.8 13.8
,!+LTDS 34.2 32.7 16.5

Fl
ow

TempAgg [10] 18.9 18.7 7.3
,!+LTDS 22.7 19.3 8.1

TransAction [8] 24.1 19.5 8.5
,!+LTDS 26.6 19.6 8.8

O
bj

TempAgg [10] 20.5 27.6 10.5
,!+LTDS 28.9 32.2 12.0

TransAction [8] 20.8 27.3 9.5
,!+LTDS 28.6 29.4 10.2

split of Table 2. Our final submission to the test server is
LTDS+ V2.

3.3. Model/Modality-Agnostic Effectiveness

To validate the effectiveness of our framework on dif-
ferent modalities and models, we applied a single-modality
version of TransAction [7], and the TempAgg model [10]
on three different modalities provided by [4].

As the results shown in Table 3, performance gains can
be achieved after integrating our framework for training,
across both models and all three modalities; this highlights
the compatibility of our proposed framework.



4. Discussion
In this report, we presented our solution to Epic-Kitchen

Action Anticipation Challenge 2022. To handle the co-
existence of long-tailed distribution and domain shifts, we
proposed cross-modality matching and cross-domain pro-
totype alignment to ensure learning domain-invariant unbi-
ased representations. In addition, we leveraged two-stage
training to improve the performance of tail classes. Our
final submission to the testing server achieves 42.0% for
overall Verb, 35.7% for overall Noun, and 19.5% for over-
all Action.
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Abstract 

 
This report explains the method that we submitted to the 
EPIC-KITCHENS-100 Action Anticipation Challenge 
2022, in which we adopted Video Swin Transformer 
(VST) as the base model. While VST has been shown to 
produce outstanding results in action recognition, it also 
produced excellent results in action anticipation from 
first-person visuals. Further, to counter the fact that 
EpicKitchens100 is an imbalanced dataset, we used the 
label-distribution-aware margin (LDAM) loss method, 
and logit adjustment to maintain the margin between 
logits with rare versus dominant labels. We also used the 
RandAugment-T method, which considers the temporal 
perturbation of videos, for data augmentation. The 
model that we ultimately submitted recorded 18.68% on 
the public leaderboard.  

1. Introduction 
Anticipating future action using first-person visuals is an 
important task for computer vision. It is a technology that 
can have future value through use in systems that warn 
about dangerous actions, and systems that support users¶ 
next actions.  
 
For conventional action anticipation models, Furnari et 
al. [1] propose RULSTM, an LSTM-based method that 
integrates RGB, optical flow, and video object 
information. Recently, for various tasks in the computer 
vision field, there have been more reports using the 
Transformer method than conventional methods. This is 
not uncommon in tasks for action anticipation, however. 
For example, Girdhar et al. [2]�� ZKR� ZRQ� ODVW� \HDU¶V�
Action Anticipation Challenge [3], proposed AVT [2] to 
model the continuity of visuals. This combined a Vision 
Transformer [4] that models spatial information with a 
Transformer to model chronological information. In 
doing so, the team achieved the highest performance in 
datasets such as Epic-Kitchens [5], EGTEA, and 50-
Salads.  
 
In our method, we used Vision Swin Transformer (VST) 
[6] as the action anticipation base model. VST is a 
Transformer for action recognition proposed by Liu et al., 
and this method has achieved the highest performance in 
datasets including Kinetics-400 [7], Kinetics-600 [8], 

and Something-Something v2. Unlike AVT [2], VST can 
simultaneously model spatial and temporal information 
through embedded patches using 3DCNN, Shifted 
Window Multi-head Self Attention, and Patch Merging. 
Using VST that we fine-tuned through pre-training on 
Kinetics and Epic-Kitchens [5], we achieved an 
anticipation score comparable to conventional methods.  
 
Epic-Kitchens-100 is a large-scale dataset that includes 
video of work in the kitchen filmed on a head-mounted 
camera, with labels for 3,806 different kinds of actions. 
With such a large number of labels, there is an imbalance 
in the amount of data for each label. For example, for 
³WXUQ-on WDS´��WKH�ODEHO�ZLWK�WKH�ODUJHVW�RI�DPRXQW�RI�GDWD��
there are 1,900 pieces of data. On the other hand, for 
³WDNH� SHDU´� DQG� RWKHU� ODEHOV�� ZKLFK� KDYH� WKH� ORZHVW�
amounts, there is only one piece of data. When learning 
imbalanced data such as this, overfitting occurs for labels 
with large amounts of data, and performance drops for 
those with less data. We adopted the LDAM [9] and 
Logit Adjustment  [10] methods to improve general 
efficiency for this imbalanced data. LDAM is a loss 
function method proposed by Cao et al.  [9] that 
determines decision bounds so that labels with more data 
have smaller distance margins from other classes of data 
distributions and labels with fewer data have larger 
margins.  LDAM can replace regular cross-entropy loss, 
and can be used alongside other countermeasures for 
imbalanced data, such as re-weighting and re-sampling. 
Logit Adjustment is a method proposed by Menon et al. 
[10], and by adjusting logits from the model, it can 
minimize balanced error, which treats errors from labels 
with large and small amounts of data equally, and in turn 
promote improvement in overall data performance. 
Adjustments can be made to logits after learning and 
during learning, and in our experiment, the latter excelled. 
Further, Logit Adjustment and LDAM can be used 
simultaneously, and in papers written by Menon et al. 
[10], they were shown to be effective in image 
recognition tasks for imbalanced datasets.  
 
In the same way, our experiment showed that 
simultaneous use of LDAM [9] and Logit Adjustment 
[10] was also effective for action anticipation. To 
improve the anticipation score, we also used 
RandAugment-T [11] for data augmentation. 
RandAugment-T is a data augmentation method for 
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video recognition proposed by Kim et al. [11], extending 
the RandAugment, [12] a data augmentation method 
frequently used in image recognition, to the temporal 
dimension in videos. As time passes in video, the 
position of the object that is the subject of the video 
changes, while the brightness of the overall image 
changes, too. RandAugment-T expresses these temporal 
changes by changing the strength of the data 
augmentation in each frame.  
Our report comprises the following.  

- Section 2: Details of the method adopted for the 
competition  

- Section 3: Experiments and results  
- Section 4: Conclusion  

2. Our Approach 

2.1. Video Swin Transformer 
For our base model, we used the VST-B [6] publicly 
available at the link1 below. The composition of VST-B 

 
1 https://github.com/SwinTransformer/Video-Swin-Transformer 

can be seen in Fig 1. It comprises four stages, with 2, 2, 
18, and 2 as the number of blocks for each stage. The 
composition of the blocks can be seen in Fig 2. z shows 
the embedding features, LN shows LayerNormalization, 
MLP shows the fully connected layer, and 3D(S)W-
MSA shows 3D shifted window multi head attention. 

2.2. Long-tail Learning 
2.2.1 LDAM 
LDAM [9] is shown in Eq. 1, while the margin for each 
label is shown in Eq. 2. Through Eq. 1, we can see that 
the margin calculated in Eq. 2 is applied only to the labels 
subject to anticipation. In Eq. 2, ܥ  is the constant not 
dependent on the amount of data, and ௝݊  shows the 
amount of data for the labels ݆ subject to anticipation.  

ǡݔ௅஽஺ெ൫ሺܮ ሻǢݕ ݂൯ ൌ െ ���
݁௭೤ି୼೤

݁௭೤ି୼೤ ൅ ȭ௝ஷ௬݁௭ೕ
ሺͳሻ 

�ȟ௝݁ݎ݄݁ݓ ൌ
ܥ

௝݊

ଵ
ସ
�݆�ݎ݋݂� א ሼͳǡ ǥ ǡ ݇ሽ ሺʹሻ 

2.2.2 Logit Adjustment 
Of the two Logit Adjustment [10] methods, the Logit 
Adjusted Loss adjusted during learning is shown in Eq. 
 ሻ showsݔshows the labels subject to anticipation, ݂ሺ ݕ .3
the logits obtained from the model, and ߨ௬  shows the 
ratio of relevant ݕ labels in the overall amount of data. 
߬ is the hyperparameter that shows the strength of 
adjustment.  

௅஺ܮ ൌ െ ���
݁௙೤�ሺ௫ሻାఛή୪୭୥ గ೤

ȭ௬ᇲאሾ௅ሿ݁
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2.3. RandAugment-T 
RandAugment-T [11] has two hyperparameters: n for the 
number of data augmentations and m for the strength. 
The strength (m) changes linearly from the head frame to 
the tail frame. Whether the strength gets stronger or 

Fig. 2: Overview of Video Swin Transformer based on Liu 2021 [6] (top) and input data(bottom). 

Fig. 1: An illustration of Video Swin Transformer Block 
based on Liu 2021 [6]. 

 



weaker from the head to the tail is determined randomly. 
The types of data augmentation are the same as the 
conventional RandAugment [12]: tKH� YLGHR¶V�
geometrical changes are modeled by adjusting rotate, 
shear-x, shear-y, translate-x, and translate-y, while 
changes in the brightness and colors of the video are 
modeled using solarize, posterize, contrast, and 
brightness. Whereas usually it is important to look for the 
optimal data augmentation method through grid research, 
due to time constraints, in this experiment we only 
adjusted the hyperparameters.  

2.4. Model Ensemble 
For the model ensemble, weighted additions are made to 
the output from each model. The weight of each model 
is automatically tuned using Optuna [13]. The objective 
function of Optuna is set at the maximum anticipation 
score for the validation data, and the number of trials 
undertaken for tuning was 200.  

3. Experiment 
Epic-Kitchens-100 [5] video data was resized to 456 in 
height and 256 in width and converted to 30 fps. The data 
input into the VST [6] was post-conversion data. We 
sampled five-second-long clips of an equal thirty-two 
frames from six seconds before the action to one second 
before the action, and each was cropped to a height of 
224 and a width of 224. Regarding the basic learning 
pipeline, AdamW was used for the Optimizer and the 
learning rate was set at 3e-4. The parameter betas for 
AdamW were set at 0.9 and 0.999, and the weight decay 
was set at 0.05. Cosine Annealing was used for the 
warmup, and the learning rate was raised linearly over 
approximately 42,000 iterations from the start of the 
learning process. The training epoch was set to 30, the 
minibatch size was 16, and learning was undertaken 
using four NVIDIA P100GPU units in a row. Random 
Resize Crop and Flip were used as data augmentation 
standards.  

3.1. Compare pretrain 
To clarify the effect of other items under examination, 
we checked the performance of the baseline VST [6]. 
Table 1 shows the results when pre-training for VST-B 

was changed. When comparing the results of pre-training, 
the model that used Kinetics-600 [8] for pre-training 
achieved the highest performance at 14.92%, showing a 
1.64% improvement over ImageNet21K and 0.38% over 
Kinetics-400 [7].  

3.2. Long-tail Learning 
Table 2 shows the results from applying LDAM [9] and 
Logit Adjustment [10] both individually and 
simultaneously. The parameters ߬ for Logit Adjustment 
are uniform at 1.0. When comparing CE and LDAM, at 
14.71%, LDAM exceeds CE by 0.17%. When using 
Logit Adjustment alongside CE and LDAM, the results 
were 18.59% and 19.74%, respectively.  

3.3. RandAugment-T 
Table 3 shows the results when applying RandAugment-
T [11]. n=1 and m=10 are the optimal parameters, and 
there is a 0.74% improvement compared to before 
application. Further, when comparing RandAugment 
[12] using the same parameters, RandAugment-T scores 
0.36% higher.  It is also effective when used in 
conjunction with RandAugment-T and LDAM or Logit 
Adjustment. When using LDAM and Logit Adjustment, 
the results were 20.54%.  This result was best in our 
experiments under the condition of no model ensemble. 

3.4. Submission Model 
3.4.1 Test Time Augmentation 
At the time of inference, we applied Three Crop for 
spatial data augmentation. When preprocessing and 
cropping the frame to 224 px horizontally and vertically, 
we used Three Crop to crop the frame into three to cover 
the whole frame. Images cropped into three were input 
into the model before outputting the average logit for 
each.  
3.4.2 Model Ensemble 
Table 4 shows the subject of the model ensemble and the 
weight of each model tuned by Optuna [13]. The 
parameters for the models shown on the table were 
adjusted using validation data, and the final validation 
data was added to the training data before learning. The 

Table1 :  Results of changing pre-training. IN22, K400, 
and K600 indicate the type of prior learning, 
ImageNet22K, Kinetics-400, and Kinetics-600, 
respectively. 

  Mean Top5 Recall[%] 

pre-train Overall Unseen Tail 

IN22 13.28 13.82 10.03 

K400 14.54 14.89 11.12 

K600 14.92 16.13 11.50 

 

Table2 : Results of Long-tail Learning. CE and LA denote 
Cross Entropy and Logit Adjustment, respectively. + indicates 
a combination of the two methods. 

    Mean Top5 Recall[%] 

pre-train Loss Overall Unseen Tail 

K400 CE 14.54 14.89 11.12 

K400 LDAM 14.71  16.99  10.92  

K400 CE+LA 18.59 14.80 16.96 

K400 LDAM+LA 19.74 15.33 18.05 

K600 LDAM+LA 19.91 15.74 17.93 
 



model that we finally submitted recorded 18.68% on the 
public leaderboard.  

4. Conclusion 
This report outlined the method that we submitted for the 
action anticipation category in EPIC-KITCHENS-100 
2022 CHALLENGES. For our base model, we adopted 
Video Swin Transformer [6], which boasts state-of-the-
art performance in action recognition. To counter the 
imbalanced dataset, we also adopted LDAM [9] and 
Logit Adjustment [10]. We used RandAugment-T [11] 
as a data augmentation method suited to video 
recognition, and confirmed the effectiveness of 
improvement methods for each. For the model that we 
ultimately submitted, we put together a weighted 
ensemble using anticipations from a trained model based 
on multiple conditions. For the weight of each model, we 
used Optuna [13] to make automatic adjustments to 
maximize performance metrics.  
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Abstract

In this work, we introduce our solution to the EPIC-
KITCHENS-100 2022 Action Detection challenge. One-
stage Action Detection Transformer (OADT) is proposed to
model the temporal connection of video segments. With the
help of OADT, both the category and time boundary can
be recognized simultaneously. After ensembling multiple
OADT models trained from different features, our model can
reach 21.28% action mAP on the test-set of the Action de-
tection challenge.

1. Introduction

With the explosion of video contents, video understand-
ing has gained lots of interest from computer vision re-
searchers [10,11,13,14,20]. In this field, action related tasks
form the basis of video understanding. Compared with tra-
ditional action recognition [12, 18, 21], action detection not
only recognizes action classes, but also detects the temporal
boundaries simultaneously. Although only solve one an-
other task, it is much difficult to distinguish the boundary
since the action interval is ambiguous. In order to solve the
action detection task, most traditional works firstly gener-
ate action proposals sorted by confidence score, then use
another separate module to classify the proposals. With the
great success of transformer in vision, a few works start to
insert transformer into the action detection pipeline [22,23].
We follow similar pipeline and propose a one-stage network
OADT for action detection.

2. Our Approach

The overall structure is showed in Fig. 1. The network
is composed of three parts: video encoder, transformer neck
and detection heads. In the following, we will describe each
part in details.

2.1. Video Encoders.

Limited by the device memory, the raw video cannot
be directly fed to the network. Therefore, the clip-level
features are extracted from the untrimmed video using the
video encoders. The video encoders are adapted from action
recognition without the classification head. In this work,
five superior action recognition methods are implemented.

Omnivore [8]. Omnivore is based on the swin-
transformer, which leverages the flexibility of transformer-
based architectures and is trained jointly on classification
tasks from different modalities. For action recognition, the
videos are converted into spatio-temporal tubes, and then
these tubes are projected into embeddings using the linear
layer.

MVit [6]. Multiscale Vision Transformers create a multi-
scale pyramid of features on the vision transformer, which
hierarchically expands the feature complexity while reduc-
ing visual resolution.

Motionformer [17]. Motionformer introduces the trajec-
tory attention that aggregates information along implicitly
determined motion paths on the video transformer.

Slowfast [7]. SlowFast proposes a two-pathway architec-
ture for video recognition. A slow pathway with a low
frame rate is designed to capture spatial semantics. In con-
trast, a fast pathway, operating at high temporal resolution,
is responsible for dealing with rapid motion.

TimeSformer [2]. TimeSformer is a transformer-based
approach built exclusively on self-attention over space and
time, where temporal attention and spatial attention are sep-
arately applied within each block.



Figure 1. Overview of our proposed OADT. It is composed of three parts: video encoder which extracts clip-level features from untrimmed
videos, transformer neck that takes in the clip embeddings and performs self-attention and detection heads which classify the clips and
regress the time boundary.

2.2. Transformer Neck

The transformer neck is composed of a sequence of
transformer [19] layers. It takes in the clip embeddings ob-
tained by the video encoder and performs self-attention. As
is shown in the right of Fig. 1, the basic transformer layer in-
cludes the layer norm (LN) operations [1], multi-head self-
attention (MHSA), residual connections [9], multi-layer
perceptron (MLP) and the downsampling operation. Fur-
thermore, a feature pyramid with different temporal reso-
lutions is created to capture the various temporal range of
actions.

2.3. Detection Heads

Different from the two-stage approaches that generate
the segment proposals firstly, The detection heads solve
the action classification and segment regression in a syn-
chronous manner. The detection heads predict N results
directly, where N is the predefined maximum of the pro-
posals. For the regression head, the segments including
the begin and end time are predicted by the several full-
connection layers. For the classification head, verb and
noun are also predicted by the full-connection layers sep-
arately for corresponding proposals, and then both are com-
bined into action classification using the simple operations,
i.e., addition or multiplication. The focal losses [15] are em-
ployed on optimizing verb, noun and action classification,
and the 1D IOU losses are used for segment regression.

3. Experiments
Epic-KITCHENS-100 [5] is a large-scale egocentric ac-

tion dataset. The dataset is very challenging because it
contains various kinds of verb and noun classes from fine-
grained action videos which capture all daily activities in
the kitchen.

3.1. Experimental Details

In this challenge, we employ the video classification
methods and pretrain them on Kinetics600 [4] dataset
firstly. Then they are finetuned on EPIC-KITCHENS-100
dataset for action recognition. After finetuning, clip-level
features are generated with sliding windows. For each slid-
ing window, the time interval is 32 frames and the temporal
stride is 16 frames. In the training stage of action detec-
tion, the model is trained for 27 epochs and the input res-
olution is 456⇥ 256. AdamW [16] optimizer is used with
weight decay of 0.0005. The batch size is 2 and the learning
rate is set to 0.0001 with the cosine scheduler. We generate
the action labels by combining verb and noun predictions.
The corresponding time intervals are obtained from the re-
gression head. In inference, Soft-NMS [3] is used for post-
processing to suppress redundant action segments.

Evaluation metrics. Mean Average Precision (mAP) is
used to evaluate verbs, nouns and actions at different tem-
poral IOU thresholds as well as average mAP. In EPIC-
KITCHENS-100 dataset, temporal IOU thresholds range
from 0.1 to 0.5 with a step of 0.1. We follow the official
split of training, validation and test. For test submission,



Team Label Test mAP(%)
@0.1 @0.2 @0.3 @0.4 @0.5 Avg

richard61
Verb 22.78 21.68 20.14 18.34 15.54 19.69
Noun 19.33 17.98 16.55 14.69 12.28 16.17

Action 14.33 13.63 12.80 11.53 9.93 12.44

Bristol-MaVi
Verb 25.33 23.99 21.91 19.61 17.08 21.58
Noun 18.99 17.87 16.41 14.43 11.36 15.81

Action 14.71 13.98 12.86 11.56 9.85 12.59

CTC-AI
Verb 22.62 21.73 20.68 17.74 15.16 19.58
Noun 20.65 19.58 18.34 16.18 12.88 17.52

Action 16.68 16.11 15.15 13.59 11.66 14.64

Alibaba-MMAI-Research
Verb 22.77 22.01 19.63 17.81 14.65 19.37
Noun 26.44 24.55 22.30 19.82 16.25 21.87

Action 18.76 17.73 16.26 14.91 12.87 16.11

4Paradigm-UWMadison-NJU
Verb 27.11 26.07 24.38 21.96 18.59 23.62
Noun 28.71 27.27 25.19 22.33 18.82 24.47

Action 23.73 22.87 21.36 19.53 16.86 20.87

Ours
Verb 30.67 29.40 26.81 24.34 20.51 26.35
Noun 30.96 29.36 26.78 23.27 18.80 25.83

Action 24.57 23.50 21.94 19.65 16.74 21.28

Table 1. Final results on EPIC-KITCHENS-100 test set.

Video encoder Val mAP(%) for Action
@0.1 @0.2 @0.3 @0.4 @0.5 Avg

TimeSformer [2] 20.47 19.75 18.69 17.02 14.82 18.15
SlowFast [7] 21.01 20.15 19.02 17.66 15.13 18.59
MVit [6] 22.41 21.44 20.16 18.50 16.10 19.72
Motionformer [17] 22.99 22.08 20.64 18.73 16.09 20.11
Omnivore [8] 25.38 24.50 23.09 21.18 18.72 22.57

Ensemble 27.19 26.23 24.38 22.47 19.82 24.02

Table 2. Detection results on EPIC-KITCHENS-100 validation
set.

our model is first trained on the training&validation set and
then test on the test set.

Ensemble models. In order to further boost our perfor-
mance, we apply the five action recognition methods men-
tioned in Section 2.1 as video encoder separately and train
each OADT model. To make full use of different models,
we ensemble OADT model trained from different features
as our final model.

Results. Tab. 2 shows our results on validation set. From
the table, we can see that OADT using Omnivore as the
video encoder performs best. While Motionformer and
MVit perform slightly worse and are roughly 2% lower.
In the end, we ensemble all the five models and can reach
24.02% which is about 1.45% higher than the single best
model in action mAP. In Tab. 1, we compare our result to
existing state-of-the-art results on the test set. Our solution
can get 21.28% mAP which is 5% higher than the winning

solution of last year. We outperform prior work especially
on verb class by a large margin of +3%.

4. Conclusion

We present our OADT model used in the EPIC-
KITCHENS-100 2022 Action Detection challenge. Our
model is a one-stage transformer-based architecture com-
posed of the video encoder, transformer block and multiple
heads for classification and regression. After ensembling
five models, our model can reach the state-of-the-art result
of 21.28% average mAP on the EPIC-KITCHENS-100 test
set.
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Abstract

This report describes our submission to EPIC Kitchens

100 action detection challenge 2022. Our submission builds

on ActionFormer – our previous work on temporal action

localization [15], and integrates latest video features from

SlowFast [7] and ViViT [1]. Our solution achieves 21.36

mAP on the validation set and 20.95 mAP on the test set,

outperforms previous best results from the 2021 challenge

by 4.84 absolute percentage points in average mAP, and

is ranked 2nd on the public leaderboard of the 2022 chal-

lenge. Our code is available at https://github.com/
happyharrycn/actionformer_release.

1. Introduction

Temporal action detection seeks to simultaneously local-
ize action instances in time and recognize their categories.
Many prior works have studied action detection in third per-
son videos [2,4,9,10,12,14,16], yet few has focused on ego-
centric videos. Key challenges arise for egocentric action
detection, as manifested in the EPIC-Kitchens dataset [6].
For example, most previous works have considered using
action proposals [9] or anchor windows [10] to represent ac-
tions in time. An egocentric video, however, often contains
hundreds of action instances from many categories span-
ning from a few seconds to a few minutes, making it diffi-
cult to design proposals or anchors.

Our solution instead considers an anchor-free model
from our previous work [15]. Our work of ActionFormer
presents one of the first Transformer based single-stage
anchor-free model, capable of localizing moments of ac-
tions in a single shot without using action proposals or pre-
defined anchor windows [15]. ActionFormer adapts lo-
cal self-attention to model temporal context in untrimmed
videos, classifies every moment in an input video, and re-
gresses their corresponding action boundaries.

We explore the integration of different video features in
ActionFormer, including SlowFast [7] and ViViT [1] (used

by the winning team in the 2021 challenge [11]). We train
two separate models for detecting the motion in the ac-
tion (defined by verbs) and the active objects (defined by
nouns), and further combine their outputs for action detec-
tion. Our submission achieves 21.36 mAP on the validation
set and 20.95 mAP on the test set, outperforms previously
best results from 2021 challenge by 4.84 absolute percent-
age points in average mAP. Our results are ranked 2nd on
the public leaderboard of 2022 challenge, with a gap of 0.32
average mAP to the top ranked solution.

2. Our Approach

Our solution firsts extract clip-level video features using
pre-trained video backbones. Each clip is thus represented
as a feature vector, and each video a sequence of feature
vectors. This sequence is further used by ActionFormer
for action detection. ActionFormer considers every moment
within the sequence as an action candidate, classifies their
action category, and regress their action boundaries. We
train two separate models to detect motion (verbs) and ac-
tive objects (nouns), and combine their outputs. In what
follows we describe the details of our approach.

2.1. Encoding Video Features

To extract video features, we consider two different
video backbones, including (a) a variant (SlowFast R101-
NL using 3D ResNet 101 with non-local blocks) of the
SlowFast network [7] widely used for video understanding;
and (b) a more recent video Transformer model (ViViT [1])
that has proven to be effective on EPIC-Kitchens dataset [8].
Both backbones are pre-trained on third person videos us-
ing Kinetics-600 [5]. Following [8], we further fine-tune
the backbones on EPIC-Kitchens Action Recognition task,
allowing the models to better adapt to egocentric videos.
The fine-tuned backbones are then used to extract clip-level
video features for action detection.

Fine-tuning on EPIC-Kitchens Action Recognition. Our
first step is to fine-tune SlowFast R101-NL and ViViT for

https://github.com/happyharrycn/actionformer_release
https://github.com/happyharrycn/actionformer_release


Projection using Convolutions

Multi-scale Transformer Encoder

Detected Actions

Lightweight Convolutional Decoder

+

Clip 
Embeddings

LayerNorm

Multi-Head
Attention

LayerNorm

MLP

Downsample

+

+

L x

Transformer Encoder
Action

Classification

Boundary
Regression

Input
Video

Action
Former

Figure 1. Overview of ActionFormer (taken from our paper [15]). Our method builds a Transformer based model to detect action instances
in time by classifying every moment and estimating action boundaries, thereby providing a single-stage anchor-free model for temporal
action localization.

action recognition on the training set of EPIC-Kitchens 100.
• SlowFast R101-NL: We attach a verb and a noun head

to the pre-trained model, and fine-tune all weights on
EPIC-Kitchens. Specifically, we randomly sample 32
frames with a temporal stride of 1 from downsampled
videos (512 ⇥ 288 at 30 FPS). The model is fine-tuned
by 30 epochs with batch size 64, weight decay 0.0001,
and initial learning rate 0.01. The learning rates decays
by 0.1 at 20th and 25th epoch. The fine-tuned model
has 51.6% top-1 noun accuracy and 65.3% top-1 verb
accuracy on the validation set with single-crop test.

• ViViT: We take the released model from [8], which
are already fine-tuned on EPIC-Kitchens. Similar to
SlowFast R101-NL, this version of ViViT include sepa-
rate verb and noun heads for classification. The model
reaches 58.9% top-1 noun accuracy and 67.4% top-1
verb accuracy on the validation set with multi-crop test.
We refer to [8] for the training details.

Video Feature Extraction. Given the fine-tuned back-
bones, our next step is to extract clip-level video features
for action detection. For both SlowFast and ViViT, we ex-
tract a feature vector for every clip of 32 RGB frames with a
temporal stride of 8. Optical flow is not used for computing
video features.
• SlowFast R101-NL: SlowFast network is fully convo-

lutional. Thus, we input video frames with a higher res-
olution of 512 ⇥ 288, and perform an average pooling
before the classification heads to extract a feature vector
for each clip. The feature vector is of dimension 2304.

• ViViT: ViViT from [8] is trained on a resolution of
320 ⇥ 320 with 60 FPS, yet takes every other frames
in the video (temporal stride 2). Altering the input reso-
lution will require interpolating the learned position em-
beddings. Thus, we downsample the videos to 320⇥569
at 30 FPS, and feed 32 consecutive frames along with 3
horizontal crops each of size 320⇥320. The model pro-
cesses these 3 crops independently, and feature vectors
from the CLS token are further averaged to produce a
768-D clip-level feature.

We experimented with using individual features for ac-
tion detection, yet found that a simple concatenation of the
features yields the best performance.

2.2. Temporal Action Detection with ActionFormer

The extracted video features are further used by our Ac-
tionFormer for temporal action detection. ActionFormer
first embeds each of the clip-level features. The embed-
ded features are further encoded into a feature pyramid us-
ing a multi-scale transformer. The resulting feature pyra-
mid is then examined by shared classification and regres-
sion heads, predicting action candidates at every time step.
Our method is illustrated in Figure 1. We refer the readers
to our paper for more technical details [15].

A Two Stream Model. While it is possible to attach sepa-
rate verb and noun heads in a single ActionFormer model,
we found it helpful to train individual models to detect mo-
tion (verbs) and active objects (nouns) and then combine
their outputs, resembling the key idea of a two stream net-



Split Method Feature Task mAP@tIoU
0.1 0.2 0.3 0.4 0.5 mean

Val

BMN [6, 9] SlowFast [7]
Verb 10.83 9.84 8.43 7.11 5.58 8.36
Noun 10.31 8.33 6.17 4.47 3.35 6.53
Action 6.95 6.10 5.22 4.36 3.43 5.21

Huang [11] ViViT [1]
Verb 22.92 21.86 20.89 18.33 15.66 19.93
Noun 30.09 27.59 25.81 22.80 19.26 25.11
Action 21.14 20.10 19.02 17.32 15.11 18.53

Ours (ActionFormer [15]) ViViT [1]
Verb 23.23 22.35 21.28 19.69 16.50 20.61
Noun 28.85 27.33 25.52 23.01 18.92 24.73
Action 22.48 21.39 20.24 18.57 16.20 19.78

Ours (ActionFormer [15]) SlowFast [7]+ViViT [1]
Verb 25.98 24.80 23.26 21.22 18.08 22.67
Noun 30.49 29.14 26.88 24.77 20.70 26.40
Action 23.87 22.91 21.70 20.28 18.04 21.36

Test

BMN [6, 9] SlowFast [7]
Verb 11.10 9.40 7.44 5.69 4.09 7.54
Noun 11.99 8.49 6.04 4.10 2.80 6.68
Action 6.40 5.37 4.41 3.36 2.47 4.40

Huang [11] ViViT [1]
Verb 22.77 22.01 19.63 17.81 14.65 19.37
Noun 26.44 24.55 22.30 19.82 16.25 21.87
Action 18.76 17.73 16.26 14.91 12.87 16.11

Ours (ActionFormer [15]) SlowFast [7]+ViViT [1]
Verb 26.97 25.90 24.21 21.77 18.47 23.46
Noun 28.61 27.14 24.92 22.13 18.69 24.30
Action 23.90 22.98 21.37 19.57 16.94 20.95

Table 1. Results of action detection on EPIC Kitchens 100. All results on the test set are evaluated on the test server. Our method achieves
an average mAP of 20.95 for the 2022 challenge, surpassing previous best results from [11].

work [13]. A possible explanation is that doing so facilities
implicit model ensemble. Specifically, each stream of Ac-
tionFormer predicts the classifications scores (p(verb) or
p(noun)) and regresses the temporal boundaries (d(verb)
or d(noun)) at each time step on the feature pyramid. We
combine the outputs by using

p(action) = p(verb)↵ p(noun)(1�↵),

d(action) = !d(verb) + (1� !)d(noun),
(1)

where ↵ = 0.45 (selected based on validation results)
is used to “calibrate” the classification scores, and ! =
p(verb)/(p(verb) + p(noun)) is used to re-weighted the
regression outputs.

Implementation Details. Our model takes the concate-
nated features (3072-D for each clip with a temporal stride
of 8) as the input, uses 6 levels of feature pyramid, and
samples a sequence with maximum length of 4608 steps
(approximately 20 minutes) for each video during training.
The training epochs is 12 and 16 for verb and noun, respec-
tively, as we observed overfitting issues with pro-longed
training schedule. The results are further processed using
multiclass SoftNMS [3]. We set the maximum predictions
of each video to 15,000. Our code will be released in our
public repository available at https://github.com/
happyharrycn/actionformer_release.

3. Action Detection Results

We now present our results on EPIC Kitchens dataset.

Dataset. Our results are reported on EPIC Kitchens 100
action detection dataset [6]. EPIC Kitchens 100 is the
largest egocentric action dataset with more than 100 hours
of videos from 700 sessions capturing cooking activities
across several kitchen environments. The dataset has an av-
erage 128 actions from a large array of categories per ses-
sion. Each action is defined as a combination of a verb (ac-
tion) and a noun (active object).

Evaluation Protocol and Metrics. We follow the official
splits of train, validation and test set. When reporting results
on validation set, we train our model on the training set.
For the results on test set, we combine both training and
validation sets for training and evaluate the results using the
official server. Our results are reported for noun, verb and
action, respectively. The metrics include the mean average
precision (mAP) at different tIoU thresholds [0.1:0.1:0.5],
as well as the average mAP , following [6].

Results. Table 1 summarizes our results on on the valida-
tion and test set. When using the same ViViT backbone and
evaluated on the validation set, our method reaches an av-
erage mAP of 19.73% for action detection in comparison to
the previous best result of 18.53% from Huang et al. [11]
(also last year’s winning solution). Adding SlowFast fea-
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tures further improves the average mAP to 22.67%, 26.40%,
and 21.36% for verb, noun, and action, respectively, largely
outperforming the previous best [11] by 2.74%, 1.29%, and
2.83%. On the test set, our final model achieves 23.46%,
24.30%, and 20.95% mAP on verb, noun, and action, which
is 4.09%, 2.43% and 4.84% higher than the previous best
results [11]. Our average mAP for actions is slightly lower
than the best ranked solution in the 2022 challenge, with a
small gap of 0.32%.

4. Conclusion

In this report, we presented our solution using Action-
Former and latest video backbones for temporal action de-
tection in egocentric videos. Notwithstanding its simplic-
ity, our approach has demonstrated strong performance on
the EPIC Kitchens dataset, ranked 2nd on the public leader-
board of 2022 challenge, surpassing previous best results
and with a gap of 0.32 average mAP to the top ranked so-
lution. We hope that our model can shed light on tempo-
ral action localization and egocentric vision, and the more
broader problem of video understanding.
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Abstract

To Detect the start and end of each action in an

untrimmed video in the 2022 EPIC-KITCHENS-100 com-

petition, this technical report proposes a powerful network

architecture, called Neigborhood-Window-Attention Trans-

former. The key point of our model is to predefine a series

of sliding fixed window which corresponds to the fixed du-

rations, and then the sliding window slide along the time

dimension on the video, and predicts the specific action

category around the center of its timeline and temporal

boundaries in the time series corresponding to each slid-

ing window one by one. The method equipped with features

provided by SlowFast [4] and Timsformer [1], achieves

15.4%mAP on the validation set and 14.6% mAP on the

test set without bells and whistles, surpasses most methods,

and is ranked 3th on EPIC Kitchens 100 action detection

challenge 2022.

1. Introduction
Temporal Action Localization (TAL), also known as

Temporal Action Detection, is an important area of video
understanding. In this field, the video is usually not
untrimmed, so the duration of the video is long, and the
action only occurs in a short period of time in the video.
The video may contain multiple actions or may not contain
actions. Transformer-based models have been referenced in
computer vision tasks across domains and achieved good re-
sults, including object detection [ [2], [13], [8], [7]], image
classification [ [3], [10]], also increasingly used in action
understanding [5] and action recognition [11]. For long-
time video the number of frames to be extracted will also
increase computational complexity accordingly. The author
of paper Timsformer [1] experimented with five different
methods, and finally found the so-called divided space-time
attention, which literally means attention separated in space

and time.
Besides, TAL regarded as consisting of two subtasks,

one is to predict the start and end time sequence interval
of the action, and the other is to predict the category of
the action. Actions in long videos can be vastly different
length that are difficult to capture with a fixed window or
patches. Kai Han et al. present Transformer iN Transformer
(TNT) [6] Features of both outer patches and inner patches
will be aggregated to enhance the representation ability.

2. Architecture
To address this challenge, on the basis of Actionformer

[12], which combines multi-scale feature representation
with local self-attention, and uses a lightweight decoder to
classify each moment in time and estimate the correspond-
ing action boundary, we propose a Neigborhood-window-
Attention and multi-head-in-head transformer, which is
made to model not only the relationship between those dif-
ferent clip windows, but also the relationship within each
clip window. The overview architecture of our approach is
visualized in Figure 1. Our method detects the moment as
the action instance on its timeline center and further esti-
mates the distance from the center to the action start and
offset (Time Boundary). In detail, our model relies on a
sequence of video clip features via SlowFast and Times-
former, embeds each of these features, and adds positional
embeddings. The features are further encoded into a fea-
ture pyramid using a multi-scale channel transformer with
Neigborhood-Window-Attention and Multi-Head-In-Head
attention (Figure 1, right).

We believe that the internal information of each feature
clip window is not fully utilized. Inspired by Pyramid Vi-
sion Transformer and Convolutional Stem, our Transformer
module is made to model not only the relationship be-
tween those different clip windows, but also the relationship
within each clip window, improving the features fusion and
making the training process more stable.



Figure 1. Overview of our model architecture. Our approach builds a Transformer-based model, still using the action classification and
estimating action boundaries for each moment. In feature extraction process, we extract a sequence of video clip features by SlowFast
and Timesformer, then embeds each of these features. The embedded features will be encoded via Neigborhood window Attention and
Multi-Head-in-Head transformer. A candidate action is generated at each time step, using the classification head to predict the verb and
noun category and the regression head to predict the boundaries of the verb and noun time boundaries..

2.1. Neigborhood Window Attention

As show in figure 1, outer clip windows model the
global relationship between window embeddings (right
top). Given an embedding, we uniformly split it into some
clip windows, Neigborhood window Attention utilizes stan-
dard transformers to handle the clip windows that break the
global structure of the embedding. This approach proved to
be a good mixed token method to fuse the features which
represent different region information, besides, ensures that
enough features are assigned to short action segment candi-
dates, which would otherwise be overwhelmed by features
from other segments in the long video that are simply nor-
malized. This increases the probability of predicting that
every action start and end time is covered.

2.2. Multi-Head-in-Head

Inner window models the pixel embedding local struc-
ture information (Figure 1, right). A standard Transformer
Block structure includes multi-head self-attention (MSA)
and multi-layer perceptron (MLP). For efficiency, we em-

ploy a multi-head-in-head, which can learn the information
from different representation subspaces from different ar-
eas. Specifically, the embedding of the channels of each
window is averaged, and same number attention values are
obtained through a head-in-head transformer. The atten-
tions will be multiplied or summed by the channels cor-
respondingly. The module achieves feature enhancement
through dimension-wise attention with few parameters in-
creases.

3. Results

We use the official code to evaluate egocentric action de-
tection methods on the EPIC-KITCHENS-100, For the ac-
tion combined with verb and noun, we take different Fu-
sion Strategies (FS) to generate actions. Table 1 shows
the results on the validation and test set. On valida-
tion set, our method reaches an average mAP of 18.35%,
17.48% and 15.39% for verb, noun and action, on test set,
our model has a final mAP of 19.59%/17.52%/14.64% for
Verb/Noun/Action. We do not doubt that the results of our



Split Method Task mAP@tIOU
0.1 0.2 0.3 0.4 0.5 mean

val

BMN [9]
+

SlowFast [4]

Verb 10.8 9.8 8.4 7.1 5.6 8.4
Noun 10.3 8.3 6.2 4.5 3.4 6.5
Action 7.0 6.1 5.2 4.4 3.4 5.2

Ours
Verb 20.89 19.99 18.58 17.17 15.14 18.35

Noun 20.64 19.40 17.94 16.11 13.33 17.48
Action 17.58 16.81 15.62 14.43 12.53 15.39

test

BMN [9]
+

SlowFast [4]

Verb 11.1 9.4 7.4 5.7 4.1 7.5
Noun 12.0 8.5 6.0 4.1 2.8 6.7
Action 6.4 5.4 4.4 3.4 2.5 4.4

Ours
Verb 22.62 21.73 20.68 17.74 15.16 19.59

Noun 20.64 19.58 18.34 16.18 12.88 17.52
Action 16.68 16.11 15.15 13.59 11.66 14.64

Table 1. Results on EPIC Kitchens 100 action detection challenge
2022. All results on the test set were evaluated on the test server.
The results on validation were evaluated by the official code. We
also include BMN results as our baseline. Both our models signif-
icantly outperform the strong baseline results.

Task Method 0.1 0.2 0.3 0.4 0.5 Avg

Verb Actionformer 26.6 25.6 24.4 22.4 18.3 23.4
Ours 27.5 26.4 25.0 23.0 18.4 24.16

Noun Actionformer 25.5 25.5 22.6 20.3 16.6 21.9
Ours 26.2 25.2 23.2 21.0 16.8 22.48

Table 2. The results on the validation.

method on EPIC-KITCHENS-100 can be further improved
by combining a more powerful backbone of video features
with object detection results.

Further we conduct experiments on validation set train-
ing separately with verbs or nouns, Table 2 shows the results
on the validation. On validation set, our method reaches an
average mAP of 24.16% and 22.48% for verb, noun. Com-
pared to Actionformer [3], This method demonstrates the
superiority of modeling windows and pixel-level relation-
ships for better feature representations.

4. Conclusion
In this technical report, we present a Neigborhood-

Window-Attention transformer-based method for tempo-
ral action localization. Our experiments demonstrates that
the method’s power lies in our design choices, especially
combining features with the method of Neigborhood Win-
dow Attention and Multi-Head-In-Head module to model
longer-range temporal context in videos.
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Abstract

In this technical report, we present an anchor-free model

for the EPIC-KITCHENS-100 action detection challenge.

It predicts boundaries and confidence scores for each tem-

poral location via three parallel prediction heads. Specifi-

cally, we explore the importance the boundary scores in the

ranking of candidate proposals. We use a Gaussian Bound-

ary Mechanism to generate the boundary scores for each

proposal, which allows for small boundary errors to be pe-

nalized less than large errors during training. Finally, we

submitted our results to the EPIC Kitchens 100 action de-

tection challenge under the team name of Bristol-MaVi, and

achieve 21.6%, 15.8% and 12.6% average mAP for verb,

noun and action detection. This outperforms methods from

the previous challenge using the same features.

1. Introduction
Temporal action detection aims to predict the start and

end timestamp of each action segment in an untrimmed
video, and classify them. Most current methods [8,9,11,12]
mainly focus on localizing action segments with sliding
windows and pre-defined anchors. However, these anchor-
based methods are not very suitable for challenging datasets
such as EPIC Kitchens 100, which contains short and dense
actions. In contrast, anchor-free methods [7, 16, 17] only
generate one candidate proposal with classification scores
and a pair of relative distances to boundaries.

Evaluating the quality of anchor-free proposals is an
open problem. In [7, 17], classification confidence scores
are the only criterion used to rank candidate propos-
als. However, only using classification confidence ignores
boundary information. This means precise boundaries may
be predicted, but with a low ranking, resulting in high qual-
ity predictions being missed.

In order to solve this deficiency, we propose a Gaussian
Boundary Mechanism for anchor-free methods to predict
the probability that a temporal location is at the start or end
of an action. We incorporate our proposal into the Action-

Former action detection method [17].

2. Our Approach
An overview of our method is illustrated in Figure 1.

Given an untrimmed video, a feature pyramid is extracted
and put in three parallel prediction heads Two parallel clas-
sification heads output verb and noun class scores sepa-
rately. The Gaussian boundary head produces a set of can-
didate boundaries via a simple 1D convolutional network,
and predicts corresponding boundary scores using a Gaus-
sian Boundary Mechanism. The final confidence scores are
obtained by multiplying classification scores and boundary
scores, and used to rank and filter candidate proposals in
Soft-NMS [1].

Section 2.1 offers a formal problem formulation. Sec-
tion 2.2 introduces how to extract video features and con-
struct the feature pyramid. Section 2.3 shows the network
of two classification heads. Section 2.4 presents our main
contribution, the Gaussian boundary prediction head. Fi-
nally, Section 2.5 gives the details of training and inference.

2.1. Problem Definition
Given an untrimmed video V = {v1, v2, v3, ..., vT } with

length T , the annotations of action segments in video V can
be denoted as  = {(s, e, v, n)}Kk=1, where K is the to-
tal number of ground truth action segments, and s, e, v and
n are starting time, ending time and class label of action
segments for verb and noun, respectively. The goal of the
temporal action detection task is to predict a set of possi-
ble action segments �̂ = {(ŝ, ê, ĉ, v̂, n̂)}Mm=1. Here, ŝ
and ê are the starting and ending boundaries, ĉ is a confi-
dence score for the proposal, v̂ and n̂ are the predicted class
for verb and noun task separately, and M is the number of
predicted action segments. The annotation set  is used
to assign training labels. The predicted segments set �̂ is
expected to cover  with high overlap and recall, so M is
likely to be larger than K.

Our model uses an anchor-free presentation to predict
action segments, which is also used in [7, 16, 17]. For each
temporal location t, it regresses the relative distance [r̂st , r̂et ]



Figure 1. The Overview of our method. Given an untrimmed video, the feature pyramid is extracted and put in three parallel prediction
heads. The Gaussian boundary head predicts candidate boundaries, and uses the Gaussian Boundary Mechanism to predict corresponding
boundary scores. Two parallel classification heads output verb and noun class scores separately. The final confidence scores are obtained
by multiplying classification scores and boundary scores, and used to rank and filter candidate proposals in Soft-NMS.

between the location and corresponding action boundaries.
Therefore, the ground-truth relative distance is defined as
rst = t�s for starting, and ret = e� t for ending. The start-
ing and ending boundaries of the predictions can be calcu-
lated as follows:

ŝ = t� r̂st and ê = t+ r̂et (1)

This anchor-free manner can get rid of redundant pre-
defined anchors and capture more potential candidate action
segments.

2.2. Feature Extraction
Following [17], we use SlowFast [4] trained on the

EPIC Kitchens action recognition task [2] to extract video
features. A Transformer [15] network uses these fea-
tures to build the multi-scale feature pyramid F =
{F1, F2, F3, ..., FL}, where L is the number of layers of the
feature pyramid.

2.3. Classification Head
Given F as input, two parallel heads are used to pre-

dict the classification scores of each temporal location t for
verb and noun separately. These heads consist of two 1D-
convolutional layers with ReLU activation function, and a
sigmoid function is used to output classification scores p̂vc,t,
p̂nc,t and label v̂t, n̂t. The classification scores are used to
calculate the final confidence scores in the inference stage.

2.4. Gaussian Boundary Head
For each temporal location, the Gaussian boundary head

predicts the relative distance to starting and ending points,
as well as the boundary scores.

Two branches share the same three 1D-convolutional
layers. The first branch predicts the relative distance tu-
ple (r̂st , r̂

s
t ) by attaching a ReLU at the end, and the second

calculates the boundaries ŝ and ê using equation Eq. (1). It
first produces the relative distance tuple (r̂sg,t, r̂

e
g,t), simi-

lar to the first branch, then uses the relative distance tuple
to measure the probabilities that the current temporal loca-
tion t is an action starting or ending point. Specifically, the
boundary scores of temporal location t are defined as:

p̂st = e�(r̂sg,t)
2/2�2

and p̂et = e�(r̂eg,t)
2/2�2

(2)

where � is the variance of a Gaussian curve [6]. A tem-
poral location with a large value of r̂s or r̂s will have low
boundary confidence p̂st or p̂et , which indicates that this lo-
cation is far away from the staring or ending point and thus
is unlikely to be a boundary.

2.5. Training and Inference
Label assignment. For the classification head, we directly
use the provided verb and noun labels. To supervise the
prediction of relative distance, we calculate the distance be-
tween the temporal location and corresponding starting and
ending points. It’s worth noting that only temporal loca-
tions around the duration of an action center are selected
for training [14, 17, 18]. For the Gaussian Boundary Mech-
anism, we generate the temporal boundary probabilities pst
and pet as the supervision signal. Following BSN [9], we
calculate the maximum overlap ratio of ground truth action
region to the starting and ending regions, where the starting
and ending regions are defined as a specific duration around
starting and ending points respectively.



Loss function. We use a multi-task learning strategy to op-
timize the following loss function:

Ltotal = ↵ ⇤ Lc + � ⇤ Lr + � ⇤ Lg (3)

where Lc is a typical focal loss [10], Lr is the IoU loss
[13], Lg is the Gaussian Boundary Mechanism loss, and ↵,
�, � are the weighting parameters.

For Gaussian Boundary Mechanism loss, we calculate
the loss for starting and ending separately using the follow-
ing MSE losses:

Ls
g =

1

T 0

T
0

X

t=1

(p̂st � pst )
2 and Le

g =
1

T 0

T
0

X

t=1

(p̂et � pet )
2.

(4)
where T

0
is the number of temporal locations around the

duration of an action center.
Inference. For each location t, we fuse the classification
score p̂vc,t, p̂nc,t and the boundary score p̂st , p̂et to calculate
the final confidence score, which is used to rank candidate
proposals. The final confidence score for each proposal is:

ĉt = p̂vc,t ⇤ p̂nc,t ⇤ p̂st ⇤ p̂et (5)

These predicted candidate proposals are further processed
by Soft-NMS [1] to remove redundant predictions, and ob-
tain the final prediction set �̂ = {(ŝ, ê, ĉ, v̂, n̂)}Mm=1 for
evaluation.

3. Experiments and Results
In this section, we experimentally evaluate the proposed

model for EPIC Kitchens 100 action detection task. The
dataset and evaluation metrics will be introduced first, fol-
lowed by the implementation details and results analysis.

3.1. Dataset.

We conduct experiments on EPIC Kitchens 100
dataset [2], which is the largest egocentric action dataset.
EPIC Kitchens 100 consists of 700 variable-length videos
with 100 hours. The dataset has 90K actions and each ac-
tion is annotated as a combination of verb and noun.

3.2. Evaluation Metrics.

We use mean Average Precision (mAP) at different In-
tersection over Union (tIoU) thresholds to evaluate the per-
formance of action detection. Following the official setting,
we use IoU thresholds from 0.1 to 0.5 at step size of 0.1.
A predicted segment will be defined as a true positive sam-
ple if the tIoU with ground truth is greater than the specific
threshold.

3.3. Baselines
We compare our approach with two baselines: BMN [8]

and LocTransformer [3], both using the same features as
ours. BMN is the baseline provided in [2], and LocTrans-
former is rank 2 for the previous EPIC Kitchens 100 Action
Detection challenge, which also uses an anchor-free manner
to detect actions.

3.4. Implementation Details.
For feature extraction, the length and stride of sliding

window are set to 32 and 16 respectively. For the classifica-
tion heads, the number of action classes is set to 97 and 300
for verb and nouns. � in Equation 2 is set to 5.5. In Equa-
tion 3, the weighting of total loss function ↵,�, � are all set
to 0.5. We train the network using the Adam optimizer [5]
with a learning rate 0.0001 for 70 epochs.

3.5. Results.
Table 1 presents the performance of our model. On the

validation set, our model achieved comparable performance
with an average mAP of 14.22% for the main ranking task
”action”. On the test set, our model reached an average
mAP of 12.6% for action task. This outperforms the base-
lines and shows that our method can localize segments with
more precise boundaries. Table 2 shows how performance
can be effected by controlling �. We tried different values
from 4.5 to 6.5 for � in Equation 2, the best is � = 5.5.

4. Conclusion
This technical report presents a anchor-free action detec-

tor with three parallel prediction heads for EPIC Kitchen
100 action detection challenge. Our detector incorporates
a novel Gaussian Boundary Mechanism, which generates
boundary scores for each temporal location based on the
boundary prediction head. The boundary scores are used in
candidate proposals ranking to capture more potential high
quality proposals, and further improve the detection perfor-
mance.
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Abstract

In this report, we present the technical details of our
submission to the EPIC-KITCHENS-100 Unsupervised Do-
main Adaptation (UDA) Challenge for Action Recogni-
tion 2022. This task aims to adapt an action recogni-
tion model trained on a labeled source domain to an un-
labeled target domain. To achieve this goal, we propose
an action-aware domain adaptation framework that lever-
ages the prior knowledge induced from the action recog-
nition task during the adaptation. Specifically, we disen-
tangle the source features into action-relevant features and
action-irrelevant features using the learned action classifier
and then align the target features with the action-relevant
features. To further improve the action prediction perfor-
mance, we exploit the verb-noun co-occurrence matrix to
constrain and refine the action predictions. Our final sub-
mission achieved the first place in terms of top-1 action
recognition accuracy.

1. Introduction
The EPIC-KITCHENS-100 dataset is a large-scale video

dataset, capturing daily cooking activities in different
kitchens using head-mounted cameras [5]. It mainly con-
tains fine-grained actions involving extensive hand object
interactions, and each action in the dataset is defined by
the combination of a verb and a noun. The Unsupervised
Domain Adaptation (UDA) for Action Recognition Chal-
lenge aims to learn an action recognition model on a la-
beled source domain and generalize it to an unlabeled tar-
get domain. It has attracted increasing attention from the
community as it can significantly alleviate the annotation
burden when applying a trained model to other unannotated
datasets.

Compared with UDA for image-based tasks, such as
image classification and object detection, UDA for video-
based tasks is more challenging as both spatial features and

temporal dynamics should be aligned during the adapta-
tion. In the task of UDA for Action Recognition, adver-
sarial learning is the dominant approach that aims to learn
domain-invariant features for action recognition [2]. Al-
though rapid progress has been made, these methods have
one intrinsic limitation, i.e., they directly align source and
target features which may degrade the performance of ac-
tion recognition. It is known that the essence of action
recognition is to learn discriminative action-relevant fea-
tures. Similarly, for UDA for action recognition, it is de-
sirable to ensure that the target features are discriminative
enough for correct prediction. However, as the source video
features contain both action-relevant and action-irrelevant
features, directly aligning source and target features would
introduce extra noise and reduce the discriminability of
learned features. Therefore, it is important to align the tar-
get features with only action-relevant source features.

To address this limitation, we propose to leverage the
prior knowledge generated from the action recognition task
for video domain adaptation. Specifically, the source fea-
ture is first disentangled into action-relevant and action-
irrelevant source features using the action classifier learned
on the source data, and then the target feature is aligned with
the action-relevant source feature. In this manner, the model
can learn discriminative domain-invariant features for ac-
tion recognition. Besides, as each action class is defined
as the combination of a verb and a noun, some combina-
tions may be invalid (e.g., rinse & table). We exploit the
verb-noun co-occurrence matrix generated from the source
domain to constrain and refine the action predictions.

2. Our Approach

In this section, we describe the technical details of our
proposed approach. As illustrated in Fig. 1, the overall
framework mainly contains two stages: video representa-
tion learning and action-aware domain adaptation. We will
describe each stage in the following subsections.



Source Domain

Target Domain

Shared 
Feature Extractor D

C

ࢊࡸ

࢙࢒ࢉࡸ

Action Class 
Knowledge

ۨ ൌ

௙ௌܨ

௙்ܨ

௩ௌܨ

௩்ܨ

௣ܹ
௖௟௦ ௩௣ௌܨ

Avg

Avg

Shared 
GCN Encoder

Figure 1. Overall architecture of the proposed framework. First, the frame-level source/target features (F S
f /F T

f ) are extracted from video
frames using a pre-trained feature extractor. Then, the extracted features are passed to a Graph Convolutional Networks (GCNs), followed
by an average operation, to generate the video-level source/target feature (F S

v / F T
v ). Next, F S

v is passed to the action classifier, and then
the action-discriminative features F S

vp are generated using the action class knowledge learned by the action classifier. Lastly, we align F T
v

with F S
vp for video domain adaptation. Lcls and Ld denote action classification loss and domain classification loss, respectively. This

figure is best viewed in color.

2.1. Video Representation Learning

To learn a robust video feature representation that can
generalize across domains for action recognition, it is essen-
tial to mine the intrinsic temporal relations within videos.
Therefore, we design a video representation learning mod-
ule that consists of a pre-trained feature extractor for frame
feature encoding and a GCN encoder for temporal relation
modeling.
Feature extractors. To generate powerful feature repre-
sentations from the input videos, we explore SlowFast [6],
a model based on the 3D Convolutional Neural Network,
to extract features from the input video frames. The ex-
tracted features are used to generate the video-level features
for video domain adaptation.
GCN encoder. As the feature extractor maps individual
video frames into the corresponding frame-level features,
it does not fully explore the intrinsic temporal structure in
videos. Therefore, we apply a fully-connected GCN en-
coder to model the temporal relations between different
video frames. Concretely, we first embed the extracted fea-
tures from both the source and target domains into the graph
space using an FC layer, where the dimension of output fea-
tures is D. Then, the GCN encoder takes the embedded
features as input and outputs a sequence of frame-level fea-
tures containing rich temporal relation information. Then,
we perform average pooling on the output features to gen-

erate the video-level feature representations F S
v and F T

v .

2.2. Action-aware Domain Adaptation
In the task of UDA for action recognition, it is essen-

tial to ensure that the shared feature embeddings across do-
mains are discriminative enough for action classification.
Therefore, we propose disentangling the action-relevant
features from the holistic source features to enable the
action-aware alignment with target features.

Grad-CAM [1] is a popular technique to identify the
discriminative features for CNN-based classification mod-
els [4, 8]. It has been explored in [9–11] that weights of the
learned classifier with respect to the ground-truth class can
help to identify the critical features for correct class pre-
diction. Motivated by this observation, we propose to use
weights of the learned action classifier for the ground-truth
action class to generate the action-relevant features that are
discriminative for action classification. Concretely, with the
video-level source feature F S

v and the weights of learned
action classifier W cls

p for ground-truth class p, the action-
relevant feature is computed as:

F S
vp = W cls

p � F S
v , (1)

where � is the Hadamard product, F S
vp is the action-

relevant feature containing critical information for action
classification.



After obtaining the action-relevant features F S
vp from the

source domain, features from the target domain are aligned
with F S

vp using a domain classifier to discriminate whether
the sample is from the source or target domain. Follow-
ing [2], we insert a gradient layer between the domain clas-
sifier and the main model for gradient back-propagation. As
shown in Fig. 1, the overall framework is optimized using
two loss functions: the action classification loss Lcls using
source action labels and the domain classification loss Ld.

2.3. Verb-noun Co-occurrence Prior
During inference, the video-level target feature F T

v is
passed to the learned action classifier for action prediction.
Since each action class is defined as a combination of a verb
and a noun, we design two classification branches: one for
predicting the verb probabilities PV and the other for pre-
dicting the noun probabilities PN . Therefore, the action
probabilities are computed as:

PA = PV P
T
N , (2)

As mentioned in Section 1, some action classes are invalid
because certain verb classes and noun classes are incom-
patible, such as rinse and table. Therefore, we propose to
utilize the co-occurrence of verb and noun as prior knowl-
edge to refine the final predictions on target samples. Con-
cretely, we compute M , the co-occurrence matrix of verb
and noun, from the statistics of the source domain, where
Mi,j denotes the number of co-occurrence times of the i-
th verb class and the j-th noun class. With the assumption
that action classes never appearing in the source domain are
highly likely to be invalid, we refine the action probabilities
on target samples by reducing the probabilities of invalid
action classes:

P
0

A = PA �M
0
,M

0
=

(
1, if Mi,j > 0,

0.01, otherwise.
(3)

3. Experiments
3.1. Implementation Details
Feature extractors. We train three variants of the Slow-
Fast [6], including SlowFast with ResNet50, SlowFast with
ResNet101, and SlowOnly (using only the slow path in
SlowFast) with ResNet50. For each of the three variants,
the model is trained for 60 epochs using synchronized SGD
training as in [6]. The input number of frames is set as 32
and 8 for the fast and slow paths, respectively. The batch
size is set as 64. During feature extraction, we extract the
features from the last convolutional layer and apply aver-
age pooling to generate the frame-level feature represen-
tations. The feature dimension for SlowOnly-ResNet50 is
2048, while the feature dimensions for SlowFast-ResNet50
and SlowFast-ResNet101 are 2304.

Action-aware domain adaptation. We follow the guide-
lines posted by the challenges to train the action-aware do-
main adaptation model. The model is first trained on the
validation set for algorithm validation and hyper-parameters
tuning. Then, the model is retrained on the training set using
the selected hyper-parameters. Finally, the model is applied
to predict the action labels of target samples in the testing
set, followed by a refinement on the action predictions, to
generate the final results. During training, the parameters of
the feature extractors are fixed, while the other parameters
are learned using an initial learning rate at 3 ⇥ 10�3. The
model is trained for 60 epochs, and the learning rate is mul-
tiplied by 0.1 after 30 and 45 epochs. We empirically set
the dimension of embedded feature vectors as D = 512.

3.2. Results

Table 1 demonstrates the recognition performance on the
target validation set using the RGB and Flow features ex-
tracted from the pre-trained SlowOnly-ResNet50 model. It
is observed that by leveraging the action-relevant informa-
tion from the learned action classifier, the performance of
model can be improved by 1.72% in terms of top-1 action
accuracy on the validation set. Moreover, the refinement
using verb-noun co-occurrence prior information can fur-
ther improve the top-1 action accuracy by 0.59%. As the
EPIC-KITCHENS-100 dataset is highly imbalanced with
many tail classes containing very few training samples, the
learned action classifier may not be informative enough for
the tail classes. Therefore, we expect a higher performance
gain on a balanced dataset with enough training samples.

Table 1. The comparison of model performance on the EPIC-
KITCHENS-100 validation set. “Baseline” denotes the gen-
eral domain adaptation without using the information from the
learned action classifier. “Baseline+ADA” denotes the Action-
aware Domain Adaptation (ADA) proposed in the report. “Base-
line+ADA+AF” denotes our proposed method including the Ac-
tion Refinement (AF). The best performance is marked in bold.

Method Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

Baseline 50.33 34.30 22.63 79.75 56.15 48.41
Baseline+ADA 52.75 34.76 24.35 81.33 58.08 50.57

Baseline+ADA+AF 52.75 34.76 24.94 81.33 58.08 51.62

Table 2. The performance of different models on the EPIC-
KITCHENS-100 validation set.

Feature extractor Input Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

SlowOnly (R50) RGB+Flow 52.75 34.76 24.94 81.33 58.08 51.62
SlowFast (R50) RGB 49.55 33.35 23.01 80.57 56.03 49.82

SlowFast (R101) RGB 46.79 34.81 23.24 78.24 56.02 49.70



Table 3. The final results of UDA for domain adaptation on the EPIC-KITCHENS-100 test set.

Method Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

Ensemble 57.89 40.07 30.12 83.48 64.19 48.10

3.3. Model Ensemble
As model ensemble helps exploit the complementary na-

ture of predictions from different models [12], we ensemble
the results from models shown in Table 2. These models
are trained on features extracted using the three variants of
the SlowFast [6] action recognition model. To further im-
prove the performance, we also ensemble the results from
HC-VDA [3] which leverages the hand bounding boxes to
generate hand-centric features for video domain adaptation.
Following [7], we first calculate the action predictions for
each model and then aggregate the results in terms of ac-
tion probabilities. The final results on the test set are shown
in Table 3, and it ranks first in terms of the top-1 action
accuracy in the EPIC-KITCHENS-100 UDA Challenge for
Action Recognition 2022.

4. Conclusion
In this report, we describe the technical details of our

approach to the EPIC-KITCHENS-100 UDA Challenge for
Action Recognition 2022. To leverage the action-relevant
information that are invariant across domains, we propose
an action-aware domain adaptation framework for action
recognition. To the best of our knowledge, this is the
first work to exploit the prior knowledge induced from the
learned action classifier in the task of UDA for action recog-
nition. Moreover, we utilize the verb-noun co-occurrence
matrix computed from the source domain data to refine the
action predictions. With further performance increase from
the model ensemble, our final submission ranks first on the
leaderboard in terms of top-1 action recognition accuracy.
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Abstract

This report strives for activity recognition under domain
shift, caused by change of scenery. The leading approaches
reduce the shift in activity appearance by fusing RGB and
optical flow modalities. Different from these vision-focused
works we leverage activity sounds for domain adaptation
as they have less variance across domains and can reliably
indicate which activities are not happening. We propose
an audio-adaptive encoder and associated learning meth-
ods that discriminatively adjust the visual feature represen-
tation as well as addressing shifts in the semantic distri-
bution. To further eliminate domain-specific features and
include domain-invariant activity sounds for recognition,
an audio-infused recognizer is proposed, which effectively
models the cross-modal interaction across domains. Exper-
iments on the unsupervised domain adaptation challenge
show the effectiveness of our approach. Specifically, we
achieve the best accuracy in the noun and the action predic-
tions, over all methods that report the results on both target
and source domains. The full version of this work has been
accepted at CVPR 2022 with more domain shift scenarios.
Project page: https://xiaobai1217.github.io/
DomainAdaptation.

1. Introduction
The goal of this paper is to recognize activities such as

washing pan, cutting onion or wiping sink under domain shift
caused by change of scenery, as shown in Figure 1. Existing
solutions align distribution-shifted domains inside a single
visual video network by adversarial training [3, 16, 22, 24]
and self-supervised learning [6,18,28]. Although successful,
projecting the visual features from different source and target
domains into a shared space can make the ability of the
model to distinguish between classes in the target domain
suffer. We observe that activity sounds can act as natural
domain-invariant cues, as they carry rich activity information
while exhibiting less variance across domains. We thus
propose a video model which adapts to video distribution
shifts with the aid of sound.

Many have considered sound in addition to visual analy-

Target domainSource domain

Wiping sink

Stirring onion

Figure 1. We recognize activities under domain shifts, caused by
change of scenery, with the aid of sound.

sis for activity recognition within a single domain [13,20,21,
23, 26, 31, 32, 35, 36, 38]. For instance, both Gao et al. [13]
and Korbar et al. [20] reduce the computational cost by pre-
viewing the audio track, while Lee et al. [21] show that com-
bining visual features with audio can better localize actions.
However, the cross-modal correspondences become harder
to discover when shifting domains, causing existing cross-
modal fusion schemes to degrade in performance. Yang et
al. [37] and Planamente et al. [25] propose to directly fuse
visual and audio features or predictions for cross-domain
activity classification. However, the effectiveness of these
methods is reduced when not all activities make a charac-
teristic sound. Different from previous works, we introduce
audio-adaptive learning methods and a cross-modal interac-
tion that utilizes the reliable domain-invariant cues within
sound to help the video model adapt to the distribution shift.

We introduce two technical contributions in this report.
First, we propose an audio-adaptive encoder which exploits
the rich information from sound to adjust the visual feature
representation causing the model to learn more discrimina-
tive features in the target domain. This is done by preventing
the model from over-fitting to domain-specific visual con-
tent, while simultaneously dealing with imbalanced seman-
tic distributions between domains. Second, we introduce an
audio-infused recognizer, which eliminates domain-specific

https://xiaobai1217.github.io/DomainAdaptation
https://xiaobai1217.github.io/DomainAdaptation


features further and allows effective cross-modal interaction
across domains by considering domain-invariant activity in-
formation within sound. Experiments on EPIC-Kitchens
unsupervised domain adaptation challenge [8] demonstrate
the advantage of our approach under scenery shift. While
achieving good performance int the target domain, we are
the best in the source among submitted results.

2. Related Work
Sound for activity recognition. Many works have uti-
lized sound for within-domain activity recognition in videos,
e.g., [13,17,20,21,31,32]. Since there is a natural correlation
between the visual and auditive elements of a video, Korbar
et al. [19] and Asano et al. [1] learn audio-visual models in a
self-supervised manner. As processing audio signals is much
faster than video frames, both Gao et al. [13] and Korbar et
al. [20] reduce computation by previewing the audio track
for video analysis. Cross-modal attention is widely used
in activity localization [21, 32, 36] and audiovisual video
parsing [31, 35] to guide the visual model to focus on the
audible regions. Zhang et al. [38] conduct repetitive activity
counting by using audio signals to decide the sampling rate
and predict the reliability of the visual features. As opposed
to most works which rely on sound for within-domain activ-
ity recognition, we consider its domain-invariant nature for
activity recognition across different domains.
Video domain adaptation by vision. The field of vision-
focused domain adaptation is extensive (see recent surveys
[34, 40]). Here, we focus on video domain adaptation for
activity recognition. State-of-the-art visual-only solutions
learn to reduce the shift in activity appearance by adversarial
training [3–6, 16, 22, 24] and self-supervised learning tech-
niques [6,18,22,28]. While Jamal et al. [16] and Munro and
Damen [22] directly penalize domain specific features with
an adversarial loss at every time stamp, Chen et al. [3], Choi
et al. [6] and Pan et al. [24] attend to temporal segments
that contain important cues. Self-supervised learning objec-
tives are also incorporated in [22] and [6] to better align the
features across domains by utilizing the correspondences be-
tween RGB and optical flow or the temporal order of video
clips. Song et al. [28] and Kim et al. [18] obtain remark-
able performance by contrastive learning for self-supervised
learning to align the feature distributions between video do-
mains. Instead of relying on the vision modality only, which
may present large activity appearance variance, we consider
the domain-invariant information within sound to help the
model adapt to the visual distribution shift.
Video domain adaptation by vision and audio. As audio
signals contain valuable domain-invariant cues, some recent
works recognize activities across domains with the aid of
sound. Yang et al. [37] directly fuse the features from visual
and audio modalities before classification. However, this
can lead to the visual features dominating the classification

since many activities are silent and the audio features are
less discriminative. As a result, the complementary infor-
mation from sound may not be considered. Planamente et
al. [25] instead align the two modalities with an audio-visual
loss. Nonetheless, the audio predictions for silent activities
remain unreliable and limit their performance improvements.
Instead, we propose audio-adaptive learning that exploits the
supervisory signals from sound to adjust to the distribution
shift and handle both audible and silent activities.

3. Approach
For activity recognition under domain shift, we consider

unsupervised domain adaptation where we have: a set of
labeled source videos S={(XS

1 , y
S
1 ), . . . , (X

S
N , ySN )} and a

set of unlabeled target videos T ={XT
1 , . . . , XT

M}. In each
domain, X and y indicate a video sample and the correspond-
ing activity class label, while N and M are the number of
samples in the source and target domain. Using all available
training data from the source and the target domains, the
task is to train an activity recognition model, which performs
well on (unseen) videos from the target domain.

We train our audio-adaptive model in two stages using
videos from source and target domains with accompanying
audio. In the first stage we train our audio-adaptive encoder
(Section 3.1) that uses audio to adapt a visual encoder to
be more robust to distribution shifts. In the second stage
we train our audio-infused recognizer (Section 3.2) using
pseudo-labels from the audio-adaptive encoder for the target
domain and the ground-truth labels for the source domain.
The audio-infused recognizer maps the source and target
domains into a common space and fuses audio and visual
features to produce an activity prediction for either domain.

3.1. Stage 1: Audio-Adaptive Encoder
Our audio-adaptive encoder E(·), detailed in Figure 2,

consists of a visual encoder V(·), an audio encoder A(·)
and an audio-based attention module  (·). Since the sounds
of activities have less variance across domains, E(·) aims
to extract visual features that are invariant but discrimina-
tive under domain shift with the aid of A(·) pre-trained
for audio-based activity recognition. To this end, we train
V(·) and  (·) with two audio-adaptive learning methods:
absent-activity learning for unlabeled target data and audio-
balanced learning for labeled source data. The former aims
to remove irrelevant parts of the visual features while the
latter helps to handle the differing label distribution between
domains. Once trained, for each video, we can extract an
audio feature vector from A(·) and a series of visual features
from V(·) with which to train our audio-infused recognizer
(Section 3.2) for activity classification.
Audio-based attention. We use an audio-based attention
module  (·) to adapt the visual encoder to focus on activity-
relevant features. For example, the visual model may pre-
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activities and interactions are weighted higher to handle the semantic shift between domains.

dict the activity washing because of the presence of a sink.
However, without the sound of water the attention module
suppresses the channels encoding the sink thus increasing
the prediction of the correct class. The attention module is
based on the transformer encoder [9, 10, 33]. It takes the
audio features as input and outputs the channel attention
feature vector, which is multiplied with the visual features.
Absent-activity learning. The absent-activity learning uses
audio in the target domain to train the attention module and
visual encoder. Naively, we could treat the class with the
highest probability from the visual encoder as the pseudo
label. However, doing so can create biased pseudo-labels
as irrelevant objects often appear in a scene. Instead, we
use the audio predictions to guide the visual pseudo-labels.
While we may not be confident which activity is happening
in a video, particularly for silent videos, we can often be
confident that certain activities with distinctive sounds are
not occurring in a video. We call these “absent activities”.
To learn from these absent activities, we generate pseudo-
absent labels for the unlabeled target domain videos, which
indicate the activities with the lowest probabilities from the
audio encoder. The visual encoder is then encouraged to
predict these unlikely classes with low probability.

Specifically, for an unlabeled video XT in the target
domain, we obtain the audio-based activity probability dis-
tribution pT

a 2 RK (K is the number of classes) from the
audio encoder A(·) trained on labeled source data. From
this we obtain the set of absent activities Q by taking the
lowest r predictions in pT

a , i.e., the classes with the lowest
probabilities from the audio encoder. We also extend this to
multi-label classification by instead assuming the (1� ↵k)�

percent videos with the lowest probabilities do not contain
class k, where � 2 (0, 1] and ↵k is the percentage of videos
containing each activity class in the labeled source domain.

Our loss for absent-activity learning is formulated as:

lA(pT
v ,Q) = �

X

q2Q
log(1� pTv,q), (1)

where pTv,q is the probability output for the qth class for the
video XT . With this loss, the visual encoder is able to ignore
confounding visual features and generate less-noisy pseudo-
labels for the target domain. This allows our model to better
capture high-level semantic information between domains
based on both appearance and motion cues.
Audio-balanced learning. Besides a change in vi-
sual appearance, domain shift can also be caused by a
change in label distributions [22] and frequencies of ob-
jects/environments. For example, the open activity may
commonly occur on a ‘cupboard’ in the source domain but
be more common with a ‘can’ in the target. These two cases
result in different audio-visual activity appearances. We
address such challenges with our audio-balanced learning,
which not only handles imbalance in activity classes, but
also imbalance in terms of the objects or the environment
being interacted with.

To this end, we first use k-means to group the video sam-
ples inside each activity class by their audio feature fSa with
the assumption that each group represents a different type of
object or environment. We use audio features for clustering
as they can indicate the material of the interacted objects
or the environment the action is performed in, while being



invariant to appearance changes. The number of interac-
tion clusters per activity class is determined by the Elbow
method [30], which favours a small number while obtaining
a low ratio of dispersion both between and within clusters.

We based our audio-balanced loss on the class-balanced
loss by Cui et al. [7]. When using the original class-balanced
loss on a source domain video XS with visual probabilities
pS
v we can balance over our activity classes:

lCB(p
S
v , y

S) =
1� �

1� �ny
L(pS

v , y
S), (2)

where L is a classification loss, e.g., softmax cross-entropy
loss and ny is the number of training samples of ground-
truth activity class y. � 2 [0, 1) is a hyper-parameter which
controls the weighting factor 1��

1��ny . As � ! 1, this weight-
ing factor becomes inversely proportional to the effective
number of samples inside each class so that tail classes in
the source domain are weighted higher in training.

With our audio-balanced loss we include an additional
weighting factor so the long tail of object interactions are
also accounted for with our interaction clusters:

lB(p
S
v , y

S) =
1� �

1� �ny,j
lCB(p

S
v , y

S). (3)

ny,j is the number of samples for the jth interaction cluster
that video XS is assigned within ground-truth activity yS .
By this loss, both rare activities and rare interactions from
frequent activities are given a high weight during training.
This means the classifier can generalize well to the target
domain where the distribution of activities and interactions
may not be the same.
Audio-adaptive encoder loss. The absent-activity loss and
the audio-balanced loss are combined to obtain the overall
loss for training the visual encoder V(·) and audio-based
attention  (·) inside the audio-adaptive encoder E(·):

lE =
X

(Xi)2T

lA(pT
i,v,Qi) +

X

(Xj ,yj)2T

lB(pS
j,v, y

S
j ). (4)

3.2. Stage 2: Audio-Infused Recognizer
While audio can help focus on the activity-relevant vi-

sual features, there is still a large difference between the
appearance of activities in different domains. To further
eliminate domain-specific visual features and fuse the activ-
ity cues from the audio and visual modalities we propose the
audio-infused recognizer R(·), visualized in Figure 3.
Transformer with domain embedding. We adopt a trans-
former encoder since its core mechanism, self-attention, can
efficiently encode multi-modal representations [12, 29, 39].
For a vanilla version, we take the input sequence:

zm=[zmcls; fv,1Ev; · · · ; fv,nEv; fa,1Ea, ; · · · ; fa,nEa], (5)
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Figure 3. Audio-infused recognizer. We add domain embedding
Ed to encourage a common visual representation across domains.
Then, an audio-adaptive class token is obtained from a series of
activity sound feature vectors, considering both audio and visual
features. It is sent into the transformer together with the visual
features. By the transformer’s self attention, this token aggregates
information from visual features with the domain-invariant audio
activity cues for activity classification.

where zmcls is the learnable class token defined as in [10],
and {fv,1, · · · , fv,n|fv,· 2 RCv} and {fa,1, · · · , fa,n|fa,· 2
RCa} are the visual and audio features of n clips from video
X . Ev 2 RCv⇥D and Ea 2 RCa⇥D are linear projections to
map the visual and audio features to D dimensions. To map
source and target domains into a common space, we first
learn a domain embedding Ed 2 RD (d 2 {S, T }), which
contains both positive and negative values and is added to
suppress domain-specific visual features. Then, the input
sequence for the transformer becomes:

z0=[zmcls; fv,1Ev+Ed; · · ·; fv,nEv+Ed; fa,1Ea, ; · · ·; fa,nEa].
(6)

Audio-adaptive class token. Ideally, the transformer’s
self attention will aggregate audio and visual features with
the class token to predict the correct activity. However, the
cross-modal correspondences are difficult to find under dis-
tribution shift, meaning the prediction may rely on the more
discriminative, but less domain-invariant, visual features. To
address this, we propose to generate an audio-adaptive class
token, which is initialized from the audio activity class pre-
diction and gradually aggregates the visual features while
keeping its own audio-based activity information through
the transformer. As shown in Figure 3, the audio-adaptive
class token is obtained from a series of activity sound vec-
tors {gk 2 RD}Kk=1, with each representing an activity class.
They capture global context information and serve as the rep-
resentation bottleneck to provide regularization for model
learning [2, 27]. For selection, the feature vector from the
audio adaptive encoder A(X) is first processed by a fully
connected layer to give the activity probabilities h 2 RK .
Then, an initial vector is obtained by g=

PK
k=1 hk ⇤ gk. We

include visual features to help silent activities select the rep-
resentative vector. To avoid the visual features dominating,
we project them to a lower dimension with a fully connected



layer before concatenating them with the initial vector g.
The concatenated vector is given to another fully connected
layer which outputs the probabilities h0 for each type of
activity sound. Finally, we obtain the audio representation
zcls=

PK
k=1 h

0
k ⇤ gk, which serves as the class token. Con-

sequently, the input sequence for the transformer becomes:

z=[zcls; fv,1Ev +Ed, ; · · · ; fv,nEv +Ed], (7)

where zcls is the audio-adaptive class token. The class token
output state is further sent to a fully connected layer to get the
final prediction p⇤. For audible activities, the activity sound
vector can be accurately selected and kept discriminative
for audiovisual interaction. For silent activities, the vec-
tor is obtained from environmental sound, which indicates
the presence of multiple possible activities. The vector be-
comes more discriminative as the transformer progressively
enhances it through the visual features.
Audio-infused recognizer loss. We train the audio-infused
recognizer on both source and target videos with the loss:

lR =
X

(Xi,yi)2{S,T }

L(p⇤
i , yi) + ⌘

⇣
L(hi, yi) + L(h0

i, yi)
⌘
, (8)

where hyperparameter ⌘ balances the loss terms and yi is
the groundtruth or, in the case of the unlabeled video, the
hard pseudo-label. p⇤

i is the final classification prediction,
and hi and h0

i are the probabilities for the activity sound
vectors outputted by the first and second fully connected
layers. The first term L(p⇤

i , yi) optimizes the transformer
to predict the correct activity class, while the second term
L(hi, yi) + L(h0

i, yi) optimizes the activity sound vectors.

4. Results
We first describe the implementation details before ab-

lating the components of our method. More ablations and
comparisons with state-of-the-art methods can be found in
our project page.

4.1. Implementation Details
For our visual encoder V(·) we use SlowFast [11] for verb

prediction while use the Omnivore [14] for the noun predic-
tion. For the audio encoder A(·) we use ResNet-18 [15]. The
audio-based attention module  (·) consists of eight trans-
former encoder layers [10] with a final fully connected layer
to obtain the attention vector for the visual encoder. The
inputs are intermediate audio features from A(·) (conv3)
along with a learnable class token defined as in [10] (note
this is different from our audio-adaptive class token used in
R(·)). The output state of the class token passes through
the fully connected layer to obtain the attention vector for
V(·). We set the parameters of our absent activity loss to
r=75 for verb prediction, while r=270 for noun prediction,
and set �=0.05 and �=0.999. Our audio-infused recognizer

EPIC-Kitchens

Model Top-1 (%) "

Stage 1: Audio-adaptive encoder E(·)
Visual encoder V(·) 48.0
+ Audio-based attention  (·) 51.2
+ Absent-activity learning 53.7
+ Audio-balanced learning 55.7
Stage 2: Audio-infused recognizer R(·)
+ Vanilla multi-modal transformer zm 56.1
+ Domain embedding z0 57.2
+ Audio-adaptive class token z 59.2

Table 1. Model components ablation. All components in the
audio-adaptive encoder and the audio-infused recognizer contribute
to performance improvement under distribution shift and the im-
provements over a vanilla SlowFast visual encoder are considerable.

R(·) consists of two transformer encoder layers [10] and
three fully connected layers for generating the class token.
The sequence dimension D is 512 and each layer has 8
self-attention heads. We train four audio-adaptive models
with the SlowFast architecture as the backbone for the visual
encoder independently to predict the verbs, and let them
take the inputs of different numbers of frames and sampling
rates, i.e. 32 frames with stride 4, 64 frames with stride 2,
32 frames with stride 2 and 64 frames with stride 1. For the
noun prediction, three audio-adaptive models with the Om-
nivore [14] backbone for the visual encoder are also learned,
taking 32 frames with stride 4, 64 frames with stride 21,
32 frames with stride 2 as inputs respectively. We use the
average prediction as the final prediction.

4.2. Ablation Study
In ablations we use RGB and audio modalities on EPIC-

Kitchens under the same setting described in [22] for predict-
ing the verbs. Since EPIC-Kitchens [22] contains multiple
adaptation settings, we report the average.
Stage 1: Audio-adaptive encoder. We report results in
Table 1. We first consider the audio-adaptive encoder alone.
Initially, we train only the visual encoder with a standard
softmax cross-entropy loss on the source domain. Simply
generating channel attention for the visual features with our
audio-based attention module already improves performance
by 3.2% top-1 accuracy on EPIC-Kitchens. Since audio
contains useful activity information, this attention helps the
visual encoder focus on relevant features. Adding the absent-
activity learning results in 2.5% improvements, demonstrat-
ing that the pseudo-absent labels increase the discriminative
ability of the model in the target domain. We observe that
adopting the audio-balanced learning and replacing the soft-
max cross-entropy with our audio-balanced loss delivers a
further 2.0% increase. This highlights the importance of
addressing the label distribution shift in domain adaption.



Stage 2: Audio-infused recognizer. For the audio-infused
recognizer, we first consider a vanilla transformer. It takes
as input zm (Eq. 5), i.e. the audio and visual features from
the audio-adaptive encoder, mapped by Ev and Ea into a
common space, alongside a learnable class token. This only
gives a marginal improvement in results. Adding the domain
embedding Ed to reduce domain-specific visual features in
z0 (Eq. 6) gives a benefit of 1.1% on EPIC-Kitchens. This
is because the cross-modal correspondences become easier
to discover. When we replace the plain audio features and
single learnable class token with our audio-adaptive class
token to get z (Eq. 7), we observe further improvements of
2.0%. This is expected, as the audio-adaptive class token
better incorporates complementary information from sound
for the final activity classification, with a standard learnable
class token the visual features will dominate the fusion inside
the transformer.

5. Discussion
Limitations. During training, our method needs videos from
both source and target domains, and all should have an audio
track with decent quality, limiting our approach to multi-
modal video training sets. While audio at test-time is not
required, it benefits activity recognition results considerably.
Potential negative impact. When deployed our approach
will have to record, store and process video and audio infor-
mation related to human activities, which will have privacy
implications for some application domains.
Conclusions. We propose to recognize activities under do-
main shift with the aid of sound, using a novel audiovisual
model. By leveraging the domain-invariant activity infor-
mation within sound, our model improves over both silent
and audible activities as well as rare activities in the source
domain. Experiments on the unsupervised domain adap-
tation challenge demonstrate that our approach has better
adaptation ability than previous visual-only solutions and
audio-visual method with late fusion. Specifically, among
all highly ranked methods that report results on both target
and source domains, we perform best in the noun and action
prediction.
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Abstract

In this report, we describe the technical details of our
submission to the EPIC-Kitchens-100 Unsupervised Do-
main Adaptation (UDA) Challenge in Action Recognition.
To tackle the domain-shift which exists under the UDA set-
ting, we first exploited a recent Domain Generalization
(DG) technique, called Relative Norm Alignment (RNA).
Secondly, we extended this approach to work on unlabelled
target data, enabling a simpler adaptation of the model to
the target distribution in an unsupervised fashion. To this
purpose, we included in our framework UDA algorithms,
such as multi-level adversarial alignment and attentive en-
tropy. By analyzing the challenge setting, we notice the
presence of a secondary concurrence shift in the data, which
is usually called environmental bias. It is caused by the ex-
istence of different environments, i.e., kitchens. To deal with
these two shifts (environmental and temporal), we extended
our system to perform Multi-Source Multi-Target Domain
Adaptation. Finally, we employed distinct models in our
final proposal to leverage the potential of popular video ar-
chitectures, and we introduced two more losses for the en-
semble adaptation. Our submission (entry ‘plnet’) is visible
on the leaderboard and ranked in 2nd position for ‘verb’,
and in 3rd position for both ‘noun’ and ‘action’.

1. Introduction
First person action recognition offers a wide range of op-

portunities and challenges, thanks to the use of wearable
devices to capture the current state of the user and of the
environment. Very often, indeed, the actions of the subject
are captured through a video-camera placed on the head
of the user. As a consequence, in contrast with most CV
tasks, the major feature of this scenario is that source data
are intrinsically characterized by rich multi-modal informa-
tion, thanks to the proximity of the sensor to the action
scene. As a result, sensor fusion between visual and au-

ditory cues can be a powerful method to fully exploit the
knowledge available in the data. However, the particular
setup of data collection also comes with several difficulties:
i) ego-motions represents a significant source of noise for
the dataset, because changes in head posture cause a shift
in the point-of-view and background. While from one side
this effect can be exploited as an intrinsic attention mecha-
nism, it may also introduce confusion between ego-motion
and the real action of the subject. An approach to mitigate
this effect could be to complement RGB data with other
motion-related sources, such as the optical flow; ii) model
predictions tend to be strongly correlated with the surround-
ing environment, which represents a bias in the dataset (usu-
ally referred to as environmental bias), thus resulting in de-
creased performances when the environment changes (e.g.
different kitchens). In this report, we discuss the idea that,
to fully exploit the potential of data sources, and to miti-
gate the performances drop across domains, it is crucial to
properly combine several sensing modalities, including au-
dio, video, and motion. This is particularly true for cross-
domain scenarios, where test data are extracted from a dif-
ferent distribution w.r.t. the training data (i.e. different users
and/or kitchens). Indeed, the effect of domain shift is not
consistent across different sensing modalities, and some of
them may suffer in some cases where others are more ro-
bust.

The reason is that domain shifts are not all of the same
nature. For instance, the optical flow is more focused on the
motion in the scene, rather than appearance, and is there-
fore less sensitive to environmental changes, thus showing
higher robustness than the visual modality when changing
environment [12]. On the other side, the domain shift of au-
ditory information is very different from the visual one (e.g.,
the sound of ‘cut’ will differ from a plastic to a wooden
cutting board). For all those reasons, the classifier should be
able to assess - depending on the conditions - which modal-
ity is more informative, and therefore should be considered
more for the final prediction.
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Figure 1: An overview of the proposed approach. It can be summarized in four main aspects: 1. Domain Generalization
through RNA-Net [15], 2. Unsupervised Domain Adaptation via Multi-Level Adversarial Alignment and entropy minimiza-
tion, 3. Multi-Source Multi-Target Domain Adaptation extension and 4. Ensemble Domain Adaptation losses.

To this purpose, authors of [15] recently proposed a
multi-modal framework, called Relative Norm Alignment
network (RNA-Net), which aims at progressively aligning
the feature norms of audio and visual (RGB) modalities
among multiple sources in a Domain Generalization (DG)
setting, where target data are not available during train-
ing. Interestingly, the authors showed that merely feed-
ing all the source domains to the network without applying
any adaptive techniques leads to sub-optimal performance,
while a multi-source domain alignment allows the network
to promote domain-agnostic features.

Including all the aforementioned considerations, we de-
veloped the method adopted in the challenge with the fol-
lowing steps (see also Figure 1):

1. RNA-Net was extended to the Flow modality, obtain-
ing remarkable results without accessing target data;

2. with further modifications, RNA-Net was adapted to
work with unlabelled target data under the standard
Unsupervised Domain Adaptation (UDA) setting;

3. the challenge’s setting was revisited by identifying
a new concurrent shift denominated ”environmental
bias”. Our framework was modified accordingly to
perform Multi-Source Multi-Target Domain Adapta-
tion;

4. the final submission was obtained by combining dif-
ferent model streams by means of DA-based losses,
namely Min-Entropy Consistency (MEC) and Com-
plement Entropy (CENT).

2. Our Approach
In this section, we first describe the DG approach used.

Then, we show our UDA framework and its extension for
Multi-Source Multi-Target Domain Adaptation. Finally, we

demonstrate how to re-define existing DA-based losses to
induce consistency between different architectures.

2.1. Domain Generalization

The multi-source nature of the proposed challenge set-
ting makes it perfect to deal with the domain shift using
DG techniques. Thus, we first exploited a method which
has been recently proposed to operate in this context, called
Relative Norm Alignment (RNA) [15]. This methods con-
sists of an audio-visual domain alignment at feature-level
through the minimization of a cross-modal loss function
(LRNA). The latter aims at minimizing the mean-feature-
norm distance between the audio and visual features norms
among all the source domains, and it is defined as

LRNA =

✓
E[h(Xv)]

E[h(Xa)]
� 1

◆2

, (1)

where h(xm
i ) = (k·k2 � fm)(xm

i ) indicates the L2-norm
of the features fm of the m-th modality, E[h(Xm)] =
1
N

P
xm
i 2Xm h(xm

i ) for the m-th modality and N denotes
the number of samples of the set Xm = {xm

1 , ..., xm
N}.

Authors of [15] proved that the norm unbalance between
different modalities might cause the model to be biased to-
wards the source domain that generate features with greater
norm, thus causing wrong predictions. Contrarily, by simul-
taneously solving the problem of classification and relative
norm alignment on different domains, the network extracts
a shared knowledge between the different sources, resulting
in a domain-agnostic model.

In our submission to the EPIC-Kitchen UDA challenge,
we extended the RNA-Net framework to the optical flow
modality, in order to exploit the multiple sources available
from the official training splits while showing the effective-
ness of RNA loss in a multi-source DG setting.

2



2.2. Domain Adaptation
The UDA techniques embedded into our pipeline can be

divided in two main groups: feature-level and classifier-
level. The first aims at aligning the distribution of source
and target, and works at different levels of representation
(frames- and video-level); the latter, instead, reduces the
classifier’s uncertainty on target data.

Multi-Level Adversarial Alignment.
Following popular practices in unsupervised video do-

main adaption techniques, we integrate into our framework
an adversarial approach [3, 12], consisting of an extension
of the DANN [8] standard UDA image-based method. We
apply it at two different feature levels; frame- and video-
level. It entails the introduction of two separate branches in
our framework. Down-stream of said branches there are dis-
criminators that try to distinguish the two domains (source
and target). Contrarily, by maximising the corresponding
discriminator losses, the network learns feature representa-
tions invariant to both domains.

Attentive Entropy. In order to reduce the uncertainty
of the classifier on the target data, we minimize the atten-
tive entropy loss proposed in [3] as in [17]. This action
minimizes the entropy, resulting in a refinement of the clas-
sifier adaptation. The term ”attentive” refers to a loss re-
weighting approach that prioritizes videos with low domain
discrepancy by focusing on minimizing entropy for these
videos.

2.3. Multi-Source Multi-Target Domain Adaptation
The previous Epic Kitchen challenges [6, 5], as well as

the literature on unsupervised domain adaptation for first
person action recognition [13, 15, 14, 18, 16], reveal a
strong dependency of the models on the environment where
the actions are recorded. This problem, known as ”envi-
ronmental bias”, causes a decrease in performance in oc-
currence of environment switches. As regards past action
recognition challenges, we see this behavior by comparing
performances of the models when tested on S1 (seen) and
S2 (unseen). In the setting proposed in [13], similar behav-
ior is observed, demonstrating the model’s low generaliza-
tion ability when tested on different kitchens.

The above considerations allow us to identify a sec-
ondary shift in this challenge, that occurs along with the
temporal shift. Indeed, the training data are collected from
different environments i.e. kitchens, thus introducing an en-
vironmental shift. As a result, we may rename the chal-
lenge setting Multi-Source Multi-Target Unsupervised Do-
main Adaptation.

To deal with this new setting we propose a novel frame-
work, which we call Multiple Spatio-Temporal Adversarial
Alignment (MSTAA), combining Multiple Temporal Ad-
versarial Alignment (MTAA) and Multiple Spatial Adver-
sarial Alignment (MSAA). MTAA is obtained by adopt-

ing 2K domain adversarial branches (where K indicates the
number of kitchens), aligning the source and the target dis-
tribution both at video- and frame-level for each kitchen. In-
stead, MSAA consists in adding another adversarial branch
with a k-dimension discriminator in order to align the distri-
bution of different kitchens and alleviate the environmental
bias issue.

2.4. Ensemble UDA losses
For our final submission different models have been used

in order to fully exploit the potentiality of popular video ar-
chitectures. However, training individually each backbone
with standard UDA protocols would result in independently
adapted feature representations, which consequently vary
between different streams. Our intuition is that this aspect
could impact negatively the training process and the perfor-
mance on target data. Indeed, since the domain adaption
process acts on each architecture independently, naively
training the backbones separately would yield mismatch-
ing prediction logits on target data, which, when combined,
could increase the level of uncertainty of the model. For this
reason, we use the Min Entropy Consensus (MEC) loss, to
impose a consistency constraint between feature representa-
tions from various models. Then, re-purposing the existing
Complement Entropy (CENT) loss, we attempt to exploit
the target data samples based on the assumption that there
are some conditions in which it is easier to answer the ques-
tion ”Which classes does this action not belong to?” rather
than ”Which class does this action belong to?”.

Min Entropy Consensus (MEC loss). We extended the
loss proposed in [19] to encourage coherent predictions be-
tween different models. The resulting loss is defined as:

LMEC = �
1

m

mX

i=1

1

b
max
y2Y

X

b

log pb(y|x
t
i) (2)

where m is the cardinality of the batch size of the target
set, y is the predicted class, and log pb(y|xt

i) is the predic-
tion probability of the b-th backbone network. The intuitive
idea behind the proposed approach is to encourage different
backbones to have a similar predictions.

Complement Entropy (CENT). The Complement En-
tropy (CENT) loss aims at neutralizing the negative effects
on the final prediction of clips whose logits present high
degrees of uncertainty. It accomplishes this by “flattening”
the predicted probabilities of “complement classes”, i.e., all
classes except the predicted one. As a result, when predic-
tions are ensembled, the noise due to uncertainty on com-
plement classes is reduced. We refer to this loss as “com-
plement entropy” objective, as it consists in maximizing the
entropy for low-confident classes rather than minimizing it
for the most confident one, as standard entropy minimiza-
tion does. It is defined as:
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UNSUPERVISED DOMAIN ADAPTATION LEADERBOARD

Rank Verb Top-1 Noun Top-1 Action Top-1 Verb Top-5 Noun Top-5 Action Top-5
VI-I2R 1 57.89 40.07 30.12 83.48 64.19 48.10
Audio-Adaptive-CVPR2022 2 52.95 42.26 28.06 80.03 67.51 44.03
plnet 3 55.51 35.86 25.25 82.77 60.65 40.09
CVPR2021-chengyi 4 53.16 34.86 25.00 80.74 59.30 40.75
CVPR2021-M3EM 5 53.29 35.64 24.76 81.64 59.89 40.73
CVPR2021-plnet 6 55.22 34.83 24.71 81.93 60.48 41.41
EPIC TA3N [4] 8 46.91 27.69 18.95 72.70 50.72 30.53
EPIC TA3N SOURCE ONLY [4] 9 44.39 25.30 16.79 69.69 48.40 29.06

Table 1: Leaderboard results of EPIC-Kitchens Unsupervised Domain Adaptation Challenge. The results obtained by the
top-3 participants and the provided baseline methods are reported. Bold: highest result Underline: second highest result;
Green: our final submission.

UNSUPERVISED DOMAIN ADAPTATION

Verb Noun Action
Ensemble (E) Source Only 53.64 32.65 22.98
E-UDA 53.88 33.10 23.22
E+MEC 53.67 34.32 23.91
E+MEC+CENT 54.20 33.92 23.99
E-SMR+MEC+CENT 54.55 34.72 24.22
E-SMR+MEC+CENT+MTAA 54.09 33.72 23.77
E-SMR+MEC+CENT+MSTAA 54.01 34.82 24.24

Table 2: Results on the EPIC-Kitchen validation set.

DOMAIN GENERALIZATION

Target Verb Top-1 Verb Top-5

Source Only 7 44.39 69.69
EPIC TA3N [4] 3 46.91 72.70
RNA-Net [15] 7 47.96 79.54
EPIC TA3N+RNA-Net 3 50.40 80.47

Table 3: Results on the EPIC-Kitchen test set.

LCENT =
1

N

NX

i=1

H(ŷic̄)

= �
1

N

NX

i=1

CX

j=1,j 6=p

(
ŷij

1� ŷip
log

ŷij
1� ŷip

)

(3)

where N is the total number of samples in the batch, ŷip
represents the predicted probability of the class p with the
higher score for the i-th sample, i.e., ŷip = maxj(ŷij), and
H(·) is the entropy function computed on the prediction of
complement classes ŷic̄ (c̄ 6= p). The formulation is similar
to the one in [2], and we extend it to operate in an unsuper-

vised fashion.

3. Framework
In this section, we describe the architectures of the fea-

ture extractors used to produce suitable multi-modal video
embeddings, and the fusion stategies adopted to combine
them. Finally, we deepen the analysis describing the hyper-
parameters used for the training.

3.1. Architecture
Backbone. For our submission, we adopted three differ-

ent network configurations. In the first one, correspond-
ing to the RNA-Net framework in [15], we used the In-
flated 3D ConvNet (I3D), pre-trained on Kinetics [1], for
RGB and Flow streams, and a BN-Inception model [10]
pre-trained on ImageNet [7] for the auditory information.
Each feature extractor produces a 1024-dimensional repre-
sentation which is fed to an action classifier. In the sec-
ond configuration, we used BN-Inception models for all
the three streams, using pre-extracted features from a TBN
[12] model trained on EPIC-Kitchens-55. In the last con-
figurations, we used standard ResNet-50 architectures [9]
equipped with the Temporal Shift Module [11] pre-trained
on EPIC-Kitchens-55 1.

Multi-modal fusion strategies. In all the above men-
tioned configurations, each modality is processed by its own
backbone, and the corresponding extracted representations
are then fused following different strategies. For RNA-Net,
we followed a standard late fusion strategy, consisting in
averaging the final score predictions obtained from two dif-
ferent fully-connected layers (verb, noun) from each modal-
ity. In the other configurations, we adopted the recent mid-
fusion strategy, called Semantic Mutual Refinement sub-
module (SMR), proposed in [20], to generate a common
frame-embedding among the modalities. Then, using tem-

1
https://github.com/epic-kitchens/

epic-kitchens-55-action-models
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�RNA �CENT �MEC � �
1 0.31 0.22 0.003 0.75, 0.75, 0.75

Table 4: UDA losses hyper-parameters used during training.

poral pooling, we obtain a final video-embedding that is
sent to the verb and noun classifiers.

3.2. Implementation Details
We trained I3D and BN-Inception models with SGD op-

timizer, with an initial learning rate of 0.001, dropout 0.7,
and using a batch size of 128, following [15]. Instead,
when using pre-extracted features from ResNet50 or BN-
Inception, we trained the SMR modules on top of them for
45 epochs with an initial learning rate of 0.03, decayed af-
ter epochs 25 and 35 by a factor of 0.1. We used a batch
size of 128 with SGD optimizer. In Table 4 we report the
other hyper-parameter used. Specifically, we indicate with
�RNA, �CENT and �MEC the weights of RNA, CENT and
MEC losses respectively. In addition, we report the values
used to weight the attentive entropy loss (�) and the domain
losses at different levels (�) for MSTAA.

4. Results and Discussion
In Table 1 we report our best performing model on the

target test, achieving the 2st position on ‘verb’, and the 3rd
on ‘noun’ and ‘action’. Meanwhile, in Tables 2 and 3 we
show an ablation of the proposed UDA and DG methods
described in section 2.

How well do DG approaches perform? The results
in Table 3 are obtained under the multi-source DG setting,
when target data are not available during training. Notice-
ably, RNA outperforms the baseline Source Only by up to
3% on Top-1 and 10% on Top-5, highlighting the impor-
tance of using ad-hoc alignment techniques to deal with
multiple sources in order to effectively extract a domain-
agnostic model. Moreover, it outperforms the recent UDA
technique TA3N [3] without accessing target data. Interest-
ingly, when combined with EPIC TA3N, it further improves
performance, proving the complementarity of RNA to other
existing UDA approaches.

In Table 2 it can be seen how the proposed UDA ap-
proaches improve Top-1 accuracy on all categories by up
to 1%. Although using an additional adversarial branch for
each kitchen does not appear to provide a significant im-
provement on the validation set, it increases the top-1 ac-
tion accuracy on the test set, allowing us to obtain the third
position in the challenge. Without MSTAA, the accuracy
on the action top-1 reaches just 24.83%. This outcome was
predictable given that the validation set is populated with
a different set of kitchens than the test set, whereas the
kitchens in the test set are the same as those used for the

target and source training. This aspect confirms the Multi-
Source Multi-Target Unsupervised Domain Adaptation set-
ting and the presence of two different shifts, the temporal
shift (2018-2020) and the environmental shift (among the
kitchens).
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Abstract

In this report, we present the technical details of our
submission to the 2022 EPIC-Kitchens Unsupervised Do-
main Adaptation (UDA) Challenge. Existing UDA meth-
ods align the global features extracted from the whole video
clips across the source and target domains but suffer from
the spatial redundancy of feature matching in video recog-
nition. Motivated by the observation that in most cases a
small image region in each video frame can be informative
enough for the action recognition task, we propose to ex-
ploit informative image regions to perform efficient domain
alignment. Specifically, we first use lightweight CNNs to
extract the global information of the input two-stream video
frames and select the informative image patches by a dif-
ferentiable interpolation-based selection strategy. Then the
global information from videos frames and local informa-
tion from image patches are processed by an existing video
adaptation method, i.e., TA3N, in order to perform feature
alignment for the source domain and the target domain.
Our method (without model ensemble) ranks 4th among this
year’s teams on the test set of EPIC-KITCHENS-100.

1. Introduction

With the rapid development of deep learning tech-
niques, how to develop deep neural networks to under-
stand human’s daily interactions with surrounding environ-
ments from the first-person perspective has gained increas-
ing interests from researchers. The EPIC-KITCHENS-100
dataset is a large video dataset of first-person perspective,
and the videos record most of the common actions that
would happen in a kitchen scene [2]. The dataset provides
fine-grained action labels, and each action is composed by
a pair of verb and noun labels. In order to meet the task
of EPIC-KITCHENS-100 Unsupervised Domain Adapta-
tion (UDA) Challenge for Action Recognition, the model
needs to be trained on the labeled source domain (EPIC-

Figure 1. Illustration of fine-grained action recognition on EPIC-
KITCHENS-55 (source domain) and EPIC-KITCHENS-100 (tar-
get domain). (a) Due to the differences in shooting time and indoor
environment, there are many different background objects in the
video clip of the same action (e.g., “cutting onion”) between the
source/target domains, which are irrelevant to the action recogni-
tion task. (b) By selecting the most informative image regions for
processing, the domain discrepancy between the source domain
and the target domain can be effectively reduced.

KITCHENS-2018) and adapted to the unlabeled target do-
main (EPIC-KITCHENS-100). The UDA for action recog-
nition is more challenging than the action recognition task
since the adapted model needs to overcome the domain dis-
crepancy represented in complex video features between the
source domain and the target domain. Therefore, how to
effectively model the shared feature representation of the
source and target domains is one of the keys to solve this
challenge.

As recorded by a wearable camera from the first-person
perspective, egocentric video is characterized by rapidly
changing background between consecutive actions and clut-
tered background containing multiple objects irrelevant to
the ongoing action. Furthermore, for videos in different
domains, the same actions may present huge differences
of image appearance, especially in the background. As a
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Figure 2. Overview of the proposed method. The method includes two main parts: spatio-temporal feature extraction and video domain
adaptation. In spatio-temporal feature extraction, it is composed by global feature extraction branches and local feature extraction branches
for both RGB and optical flow inputs. fs

G, fs
F and ⇡s denote the glancer, focuser and policy networks for the spatial local module,

respectively. Similar notations are used for the temporal local module. In video domain adaptation, Ĝsd, Ĝtd and Ĝn
rd denote the spatial,

temporal and relation domain classifiers, respectively. Lsd, Ltd and Ln
rd denote the spatial, temporal and relation domain classification

loss. fv
C and fn

C denote the verb classifier and noun classifier. Lv
y and Ln

y denote the verb and noun classification loss, respectively. Lv
ae

and Ln
ae denote the attentive entropy loss for verb and noun, respectively.

result, directly modeling shared feature representation be-
tween different domains is challenging due to spatial redun-
dancy in the original video features. Figure 1 shows exam-
ples of video frames of the same action from two different
domains. It can be seen that the action of “cutting onion” in
the source domain shows quite different visual appearance
compared with the target domain. One exception is the re-
gion around hands which show certain consistency between
two domains. Actually, information of the verb “cutting”
and the noun “onion” is fully encoded in such informative
regions of video frames. So the challenge of action recog-
nition in UDA lies in the frequent scene switching between
each action and the difference in the background of the same
action in different domains. Therefore, instead of straight-
forward domain alignment of original video features, ex-
ploiting the most informative regions in video frames for
feature extraction shows a promising way of efficient do-
main adaptation for egocentric action recognition.

In this work, we incorporate a learning-based patch se-
lection strategy into an existing video domain adaption
framework. The patch selection strategy is implemented as
a lightweight CNN and a policy network which helps locate
the task-related regions and extract local features for each
video frame. We consider both RGB and optical flow im-
ages as input to capture the spatial and temporal character-
istic of an action. After spatial-temporal feature fusion with
both global and local features, we adopt an existing video
domain adaptation method TA3N [1] to do feature align-
ment for the source and target domains. The experimental
results on EPIC-KITCHEN-100 demonstrate the effective-
ness of the proposed method in UDA for action recognition.

2. Method

As an overview of our approach is described in Figure 2,
the overall model is divided into two parts. The first part
of the model extracts the spatio-temporal features of the
video from the input RGB frames and optical flow frames
and contains both global and local branches in the process.
For the local branch, inspired by the latest work in video-
based action recognition [6, 7], we build a spatio-temporal
local feature extraction. After extracting the global and lo-
cal features of the original video, the model will fuse the
spatio-temporal features extracted from different domains
through spatio-temporal feature fusion. In the second part,
the model is used to align the spatio-temporal features ex-
tracted from the source domain and the target domain and
finally complete the action prediction of the target domain.
We will introduce the above component in detail in the fol-
lowing sections.

2.1. The Spatio-temporal Feature Extraction

Given a RGB stream of video frames {vs
1,v

s
2, ...} and a

optical flow stream of video frames {vt
1,v

t
2, ...}, the model

will extract the spatio-temporal features of the two different
video streams. For the local feature extraction, the model
takes a glance at each frame in the video with the corre-
sponding glancer network fG. Then the cheap and coarse
feature will be fed into the corresponding policy network ⇡
to select the area that contributes the most to the task:

ṽs
n = ⇡s(fs

G(v
s
n)), n = 1, 2, ...,

ṽt
n = ⇡t(f t

G(v
t
n)), n = 1, 2, ...,

(1)
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Table 1. The recognition performance of different models on target validation set. FeatDim: the dimension of shared features of
TA3N; NumSeg: the number of input frames between the global and local branches is from left to right. The left and right side of
“+” indicates the input into the glancer network and the focuser network. “-” indicates that local branches are not used for feature extraction.

Method Backbone FeatDim NumSeg Top-1 Accuracy (%) Top-5 Accuracy (%)
Global Local Verb Noun Action Verb Noun Action

TA3N TBN - 512 6 / - 48.10 26.74 18.72 77.98 47.50 41.87
TA3N TBN - 1024 6 / - 48.28 27.30 19.25 76.71 47.39 41.65
TA3N TBN MN2/RN 1024 6 / 4+6 48.70 27.87 19.61 76.18 48.52 42.01
TA3N TBN MN2/RN 2048 12 / 8+12 49.42 28.33 20.11 77.06 47.52 41.82

Table 2. The recognition performance of different models on target test set. All results on the test set were evaluated on the test server.
Table column definitions are the same as in Table 1.

Method Backbone FeatDim NumSeg Top-1 Accuracy (%) Top-5 Accuracy (%)
Global Local Verb Noun Action Verb Noun Action

TA3N TBN MN2/RN 1024 6 / 4+6 47.71 27.74 19.41 73.38 48.91 31.26
TA3N TBN MN2/RN 2048 12 / 8+12 48.87 28.72 19.88 74.61 49.70 32.32

where ṽs
n, ṽt

n are the selected patch of RGB video frames
and optical flow video frames of the nth frame. And the
selected patch ṽs

n, ṽt
n will be fed into the corresponding

focuser network fF to extract the local feature maps esL, etL:

esL = fs
F (ṽ

s
n), n = 1, 2, ...,

etL = f t
F(ṽ

t
n), n = 1, 2, ...,

(2)

Finally, the global spatio-temporal features esG, etG and
audio feature eaG extracted from the global branch. Note
that our model considers the global features corresponding
to the audio modalities, which are not represented in the
figure for the sake of simplicity. Then the global features
are concatenated with the local spatio-temporal features esL,
etL extracted from the local branch are concatenated to serve
as the input final feature e to the video domain adaptation:

e = Concat(esG, e
s
L, e

t
G, e

t
L, e

a
G). (3)

2.2. The Video Domain Adaptation

After the global and local spatio-temporal features are
obtained, it will be more beneficial for the model to perform
efficient domain alignment. In the video domain-adapted
training of global-local features from the source and tar-
get domains, we adapt an existing video domain adapta-
tion method for action recognition tasks, i.e., TA3N [1]. As
shown in Figure 2, model first aligns frame-level features
from the source and target domain inputs through the adver-
sarial discriminators Ĝsd and generates the corresponding
domain loss Lsd. At the same time, the frame-level features
of the input are modeled in the temporal relation module of
TA3N, and these relation features are aggregated to obtain
the video-level features. In aggregating these relational fea-
tures, the domain attention mechanism is added to pay more
attention to the alignment of local temporal features that

have larger domain discrepancy. In the domain attention
mechanism, the adversarial discriminators Ĝn

rd are used to
align the relational features from the source and target do-
mains, and the corresponding domain loss Ln

rd is generated.
Then, the adversarial discriminators Ĝtd are also used to
align the video-level features from the source and target do-
mains, and the corresponding domain loss Ltd is generated.
Finally, the model classifies the video-level features through
two corresponding classifiers fv

C and fn
C , and generates the

predicted verb classification and noun classification.

3. Experiments

3.1. Implementation Details

Spatio-temporal feature extraction. Since the network
of spatial feature extraction and temporal feature extraction
are the same in parameter settings, the following description
will not distinguish between spatial and temporal feature
extraction. For the global feature of spatio-temporal feature
extraction, we use RGB, flow and audio features provided
by the organizers that were extracted with Temporal Bind-
ing Network (TBN) [4] pretrained in the source domain.
And we follow the model setting in [7] to extract the lo-
cal feature of the spatio-temporal feature. We also adopt
MobileNet-V2 (MN2) [5] and ResNet-50 (RN) [3] as the
glancer network fG and focuser network fF, respectively.
And the same policy network is used to select the image
patch that contributes most to the task from the input video
frames by the differentiable bilinear interpolation. The net-
work parameters are learned with SGD optimizer with mo-
mentum 0.9 and weight decay 5⇥ 10�4. For each network
of the local branches, the initial learning rates of fG, fF and
⇡ are set to 0.005, 0.01, and 1e � 4, respectively. For the
video frames that are input into the model, we adopt the

3



Figure 3. Visualization results of the image patches selected from
the spatial local module.

same processing method as [7] and set the size of the se-
lected image patch to 176⇥ 176.

Video domain adaptation. After obtaining the spatio-
temporal features of the source and target domains,
TA3N [1] is used to align the input features and generate the
prediction results of the model. The network parameters are
also learned with SGD optimizer with momentum 0.9 and
weight decay 5 ⇥ 10�4. During training, the parameters in
the spatio-temporal feature extraction are freezed. The ini-
tial learning rate is set at 3e-3 and decayed by a factor of 0.1
at epochs 10 and 20.

3.2. Result

Table 1 shows the action recognition effect of the model
on the target validation set under different input and hyper-
parameter settings. The table shows that the accuracy can
be improved under the same hyperparameter setting by us-
ing the local spatio-temporal branch to extract the local fea-
ture. We tried two groups of models trained under different
hyper-parameters, and their performance on the target test
set is shown in Table 2. Our proposed method performs
favorably against TA3N by 0.93% in the top-1 action accu-
racy. In our final submission, we use RGB, Flow and Audio
modalities, and the shared feature dimension of the model
is set as 2048. The number of input frames of the glancer
network and focuser network is set as 8 and 12, respectively.

The visualization results of the image patches selected

from the test set by the proposed method are shown in Fig-
ure 3. Each line shows a number of image patches selected
from consecutive video frames by the spatial local module
of the method. It should be noticed that the spatial local
module is fixed after training with source domain data. It
can be seen that the model can also be well applied to the
videos of the target domain.

4. Conclusion

This paper presents the technical details of our solution
for the EPIC-KITCHENS-100 UDA for Action Recognition
Challenge. By incorporating a learning-based patch selec-
tion strategy into an existing video domain adaption frame-
work, the proposed method can effectively improve the do-
main adaptation performance of action recognition. Our
work empirically verifies the importance of exploiting in-
formative regions for egocentric videos and provides some
new inspirations for domain adaptive action recognition.
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Abstract

This report presents the technical details of our sub-

mission to the EPIC-Kitchens-100 Multi-Instance Retrieval

Challenge 2022. To participate in the challenge, we de-

signed an ensemble consisting of different models trained

with two recently developed relevance-augmented versions

of the widely used triplet loss. Our submission, visible on

the public leaderboard, obtains an average score of 61.02%

nDCG and 49.77% mAP.

1. Introduction
Retrieving the most relevant videos based on a user

query is a difficult task involving joint visual and textual
understanding. The EPIC-Kitchens-100 dataset [2] offers a
challenging benchmark, comprising more than 70k egocen-
tric video clips capturing activities from 45 kitchens. Dif-
ferently from standard benchmarks in text-video retrieval,
the EPIC-Kitchens-100 Multi-Instance Retrieval Challenge
uses rank-aware metrics, such as the nDCG and the mAP,
to assess the quality of the solutions. This is made possible
by the introduction of a relevance function [2] which is de-
fined in terms of the noun and verb classes found within the
captions.

To participate in the challenge, we designed an ensemble
of multiple models trained with two relevance-augmented
versions [4, 5] of the standard triplet loss [7]. The final re-
sults show the effectiveness of the training techniques we
recently proposed, as well as the ensemble version. In par-
ticular, when compared to the public leaderboard from last
year, we observe improvements of almost 8% in nDCG and
5% in mAP. Moreover, when compared to the current pub-
lic leaderboard, we obtain the best result in terms of mAP
with a margin of more than 2%, and the second best result

in nDCG with only 0.4% difference.
In Section 2 we provide details about the two optimiza-

tion strategies [4, 5] which we recently developed. In Sec-
tion 3 we describe the two architectures [1,9] which we used
as the basis of our study. Implementation details and a brief
overview describing how we ensemble the different models
are provided in Section 4. Finally, we conclude the report
in Section 5.

2. Optimization strategies
We describe the details concerning two different opti-

mization strategies which use the relevance function intro-
duced in [2] to improve the contrastive loss functions com-
monly used to learn text-video retrieval models.

2.1. Relevance-Margin
To train a text-video retrieval model with the triplet loss

function, the same fixed margin is enforced on the similar-
ity between the anchor-positive pair and the anchor-negative
pair. This strategy makes it possible to maximize the sim-
ilarity of the descriptors of the video and caption pairs in
the dataset. Yet, the negative examples may have different
relevance values when compared to the anchor, and in par-
ticular they may be even partially relevant. Therefore, in [5]
we proposed to replace the fixed margin with a relevance-
based margin, that is a margin which is proportional to the
relevance value of the video and caption descriptors which
are to be contrasted. Given the anchor a, the positive p, and
the negative n, it is defined as follows:

�a,p,n = 1�R(a, n) (1)

2.2. RANP
Due to the sampling mechanisms used to form the

triplets, all the negative examples are treated as equally ir-
relevant when compared to the anchor. Yet, as mentioned



before, not all the negatives are actually irrelevant, and
therefore those which are not completely irrelevant should
not be treated as if they were. In [4] we proposed RANP, a
strategy which uses the relevance function and a threshold
⌧ to separate relevant from irrelevant samples (up to a de-
gree ⌧ ) within the batch. By doing so, the negatives can be
picked from a smaller negatives’ pool which only contains
irrelevant samples. Similarly, we introduced an additional
triplet loss term which increases the similarity of the anchor
with dissimilar yet relevant samples in the current network
state during training.

3. Models
We briefly describe here the two network architectures

which we used as the base models.

3.1. JPoSE
To have a fine-grained understanding of the actions in a

retrieval setting, Wray et al. [9] introduced JPoSE, which
disentangles the Part-of-Speech (PoS) in the captions in or-
der to learn a multi-modal embedding space for each PoS
tag. The PoS-restricted embeddings are then used to per-
form action retrieval in a joint embedding space. All the
embedding spaces are finally learned by using a mix of PoS-
restricted and PoS-agnostic losses.

3.2. HGR
Chen et al. [1] propose to deal with fine-grained retrieval

by means of hierarchical structures and graph reasoning.
First of all, for each natural language description they build
a graph of the semantic roles occurring between each noun
and the associated verb phrase [8]. A global-to-local graph
is then built by using these textual features as the nodes,
which are then aggregated through graph message passing
and aligned to the visual features with a bidirectional global
loss term.

4. Experiments
In this section, we detail the experimental settings of the

models considered within the ensemble and the description
of the ensembling strategy.

4.1. Implementation details
Details of the models. We briefly point out for each model
some technical aspects related to the implementation de-
tails.

• Model 1. JPoSE trained with the relevance-margin.

• Model 2. HGR trained with RANP, using ⌧ = 0.15,
�p = 0.2 (see [4] for more details about the margin
�p).

• Model 3. HGR trained with RANP, using ⌧ = 0.15,
�p = 0.2 with a lower size for the embedding space
(512).

• Model 4. HGR trained with RANP, using ⌧ = 0.4,
�p = 0.25.

• Model 5. HGR trained with RANP, using ⌧ = 0.4,
�p = 0.15

Training details. We trained JPoSE by using the relevance-
based margin within each of the triplet loss terms used in the
method, including both cross-modal and within-modality
losses, both at the global and at the PoS level. When dealing
with the losses at the noun (respectively, verb) level, we set
the verb IoU (respectively, noun IoU) to 1 during the com-
putation of the relevance. The optimizer used is SGD with
a momentum of 0.9 and learning rate 0.01. The model was
trained for 100 epochs with a batch size of 64.

In the case of HGR, we used RANP as the training loss
function. We employed Adam as the optimizer with a learn-
ing rate of 0.0001. We trained the model for 50 epochs with
a batch size of 64.
Dataset. We used the full training set to train the models
and we used a small validation set taken from the training
set to keep track of the learning. We used the RGB, flow,
and audio features extracted with TBN [6] which were pro-
vided by the dataset authors.

4.2. Ensembling strategy
After learning the aforementioned models, we created

the similarity matrix of each of the five models. These are
then summed before taking the mean similarity values. By
doing so, the similarity of video vi and caption qj is com-
puted as the mean of the five similarity values predicted by
the models. Finally, we use this mean similarity matrix in
the submission.

4.3. Results
In Table 1 we report the performance obtained by the

various models used within the ensemble on the validation
set. The final model which we submitted to the leader-
board (Ens.) obtained the best results on the validation set.
Moreover, when compared to previous state-of-the-art ap-
proaches (from the EPIC-Kitchens-100 Multi-Instance Re-
trieval Challenge 2021 [3]), our ensemble shows consid-
erable improvements: in fact, both Wray et al. (JPoSE
trained without the relevance-based margin) and Hao et al.
[3] obtained on average around 53% nDCG and 44% mAP,
whereas our ensemble obtains around 61% nDCG and al-
most 50% mAP. On the other hand, when comparing to the
current public leaderboard, we achieve top-1 mAP perfor-
mance (49.77% compared to 47.39% obtained by the sec-
ond best) and top-2 nDCG (61.02% compared to 61.44%).



Validation
nDCG (%) mAP (%)

Mod. v2t v2t avg v2t v2t avg
1 74.6 71.1 72.8 78.7 74.1 76.4
2 81.2 77.4 79.3 85.4 75.4 80.4
3 81.4 77.5 79.5 85.0 74.3 79.7
4 81.7 77.7 79.7 85.0 72.6 78.8
5 82.0 78.1 80.1 86.4 75.8 81.1

Ens. 82.8 79.5 81.2 88.2 78.7 83.5
Official test

nDCG (%) mAP (%)
Ens. 63.16 58.88 61.02 55.15 44.39 49.77

Table 1. Performance of the five considered models on the vali-
dation set (top) and test set (bottom) of EPIC-Kitchens-100. The
similarity scores predicted by the ensemble are obtained by aver-
aging the predictions made by each individual model.

5. Conclusion
In this report, we summarized the details of our sub-

mission to the EPIC-Kitchens-100 Multi-Instance Retrieval
Challenge 2022. The proposed ensemble, comprising sev-
eral models trained with relevance-augmented version of
the standard triplet loss, achieves considerable improve-
ments when compared to last year challenge competitors.
Moreover, the result we obtain is visible on the public
leaderboard and obtains top-1 performance in mAP (with
a margin of 2.4%) and top-2 performance in nDCG (with a
difference of 0.4%).
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Abstract

In this report, we propose a video-language pretrain-
ing (VLP) based solution [8] for the EPIC-KITCHENS-
100 Multi-Instance Retrieval (MIR) challenge. Especially,
we exploit the recently released Ego4D dataset [6] to pio-
neer Egocentric VLP from pretraining dataset, pretraining
objective, and development set. Based on the above three
designs, we develop a pretrained video-language model that
is able to transfer its egocentric video-text representation
to MIR benchmark. Furthermore, we devise an adaptive
multi-instance max-margin loss to effectively fine-tune the
model and equip the dual-softmax technique for reliable in-
ference. Our best single model obtains strong performance
on the challenge test set with 47.39% mAP and 61.44%
% nDCG. The code is available at https://github.
com/showlab/EgoVLP.

1. Introduction

Video-Language Pretraining (VLP) has prevailed in the
regime of Vision + Language, aiming to learn strong and
transferable video-language representation for powering a
broad spectrum of video-text downstream tasks, video-
text retrieval, video question answering, video-captioning.
The successes of VLP mainly stems from the availabil-
ity of large-scale open-world video-text datasets such as
HowTo100M [9], which scrapes 134K hours of instruc-
tional videos from the YouTube accompanied by text
yielded from Automatic Speech Recognition.

Despite reaching an impressive data scale, videos in the
existing video-text pretraining datasets [1, 9] are often of

*Corresponding Author.

3rd-person views and might have been edited before post-
ing on the web. Yet, there is a noticeable domain gap be-
tween the existing video-text pretraining datasets and 1st-
person view videos such as those videos captured by wear-
able cameras or smart glasses. Egocentric video has re-
ceived increasing interests from academia (e.g., activity an-
ticipation [4]) and industry (various applications in robotics
and augmented reality). But, due to such a domain gap,
directly transferring the existing VLP models to egocen-
tric downstream tasks cannot fully unleash the potential of
large-scale pretraining approaches. Roused by the favorable
scale and diversity of recently released Ego4D [6] dataset,
we are motivated to develop Egocentric VLP models [8],
which can greatly benefit various egocentric video down-
stream applications.

In this report, we leverage our Egocentric VLP [8] for
powering EPIC-KITCHENS-100 Multi-Instance Re-
trieval (MIR) challenge. We provide a comprehensive
analysis of the impact of different VLPs on this task,
e.g., without VLP, 3rd-person VLP, and 1st-person VLP.
Furthermore, to effectively transfer the video-text represen-
tation to MIR task, we devise an adaptive multi-instance
maxmargin loss for fine-tuning. Besides, we introduce the
dual-softmax technique for reliable inference.

2. Approach

2.1. VLP Model

We choose Frozen [1] as our pretraining architecture. As
depicted in the Fig. 1(b), Frozen [1] design encompasses an
elegant and simple dual encoder strategy (one per modality)
which has favorable characteristics (e.g., indexability and
efficiency [1]). Note that this allows the pretrained model
for single-modality tasks (e.g., video-only tasks). In prac-

https://github.com/showlab/EgoVLP
https://github.com/showlab/EgoVLP
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Figure 1. Top: Our Egocentric VLP framework, which includes: (a) pretraining set EgoClip; (b) VLP model; and (c) development set
EgoMCQ. We use EgoClip to pretrain a VLP model with EgoNCE loss and then evaluate on EgoMCQ. According to the feedback, we it-
eratively refine our designs of (a) and (b). Down: We transfer our pretrained model to EPIC-KITCHENS-100 Multi-Instance Retrieval task
by equipping two techniques: the adaptive multi-instance max-margin loss for fine-tuning and the dual-softmax for inference.

tice, the video encoder is a TimeSformer [2] architecture
while the text encoder builds upon DistillBERT [10]. We
adopt this notation: (Vi, Ti) represent the video-test input
to the model, while vi and ti are used to identify the L2
normalized video and text embedding with d dimension.

2.2. Egocentric Pretraining

As illustrated in Fig. 1 [8], our pretraining framework
includes three designs: EgoClip, EgoNCE, and EgoMCQ.
We use EgoClip dataset for pretraining, which comprises
3.85M video-text pairs well-chosen from Ego4D, covering
a large variety of human daily activities. Details please refer
to [8]. Next, we employ EgoNCE as the model pretraining
objective, which extends video-text InfoNCE [1] via posi-
tive and negative sampling strategies with formulation:

Lego = Lego
v2t + Lego

t2v . (1)

We formulate Lego
v2t for simplicity whereas Lego

t2v is defined
in a symmetry way.

Lego
v2t =

1

| eB|

X

i2 eB

log

P
k2Pi

exp(vT
i tk/⌧)P

j2B
�
exp(vT

i tj/⌧) + exp(vT
i tj0/⌧)

� ,

(2)

where the numerator term corresponds to our proposed
action-aware positive samples, which select the positive
sample within a batch by identifying narrations nouns and
verbs. Then, batch samples that shared at least one noun and
at least one verb are treated as positive samples: Pi = {j 2
B | noun(j)\noun(i) 6= ?, verb(j)\verb(i) 6= ?}. While
the denominator term corresponds to our proposed scene-

aware negative samples. For each video clip i, we sample

an adjacent clip i0 2 N (i), which is close to i in time (less
than 1 min) within the same video. Hence the batch is up-
dated as eB = {1, 2, · · ·N| {z }

B

, 10, 20, · · · , N 0
| {z }

N (B)

}. EgoNCE pro-

vides a general extension to adapt the existing VLP models
for video-text pretraining datasets in the egocentric domain.

We evaluate our designs of EgoClip and EgoNCE on
EgoMCQ, which contains 39K video-text multi-choices
questions that are closer to pretraining domains and bench-
mark model video-text alignment, powering us to accu-
rately validate and quickly iterate our decisions.

2.3. Task-specific Transferring

In this section, we focus on effectively transferring
pretrained video-text representations to EPIC-KITCHENS-
100 Multi-Instance Retrieval task. In this task, a narration
may be jointly associated with multiple clips, so a multi-
instance learning mechanism can better handle such a situ-
ation. And this dataset provides the action label to calculate
the correlation cij 2 [0, 1] between two clip-text pairs (i, j),
which supports the application of Multi-Instance MaxMar-
gin loss (MI-MM), as recommended in baseline [11].

L =
X

(i,j,k)2⌦

max
�
� + vT

i tj � vT
i tk

�
+
�
� + tTi vj � tTi vk

�
,

(3)
where ⌦ = {(i, j, k) |j 2 i+, k 2 i�} is a triple, which
indicates a positive instance j and a negative instance k
for i. In our setting, we define the positive set as i+ =
{j|cij > 0.1} and the negative as the remains sample within
the batch. The � is a constant margin factor.

However, different combinations are shared with the



Methods Vis Enc Input # Frames Vis-text PT
mAP (%) nDCG (%)

V!T T!V Avg V!T T!V Avg

Random - - - 5.7 5.6 5.7 10.8 10.9 10.9.
MI-MM S3D 32 HowTo100M 34.8 23.6 29.2 47.1 42.4 44.7
MME [11] TBN † [7] 25 - 43.0 34.0 38.5 50.1 46.9 48.5
JPoSE [11] TBN † [7] 25 - 49.9 38.1 44.0 55.5 51.6 53.5

Frozen Raw Videos 4 - 38.8 29.7 34.2 50.5 48.3 49.4
Frozen Raw Videos 4 HowTo100M 39.2 30.1 34.7 50.7 48.7 49.7
Frozen Raw Videos 4 CC3M+WebVid2M 41.2 31.6 36.4 52.7 50.2 51.4
Frozen Raw Videos 4 EgoClip 44.5 34.7 39.6 55.7 52.9 54.3
Frozen+EgoNCE Raw Videos 4 EgoClip 45.1 35.3 40.2 56.2 53.5 54.8

Frozen Raw Videos 16 CC3M+WebVid2M 45.8 36.0 40.9 57.2 54.3 55.8
Frozen+EgoNCE Raw Videos 16 EgoClip 49.9 40.5 45.0 60.9 57.9 59.4

Frozen Raw Videos 4 HowTo100M. 6.8 6.3 6.5 11.6 12.8 12.2
Frozen Raw Videos 4 CC3M+WebVid2M. 8.6 7.4 8.0 14.5 14.6 14.5
Frozen Raw Videos 4 EgoClip. 17.9 13.1 15.5 23.0 21.2 22.1
Frozen+EgoNCE Raw Videos 4 EgoClip 19.4 13.9 16.6 24.1 22.0 23.1

Table 1. Performance of the EPIC-KITCHENS-100 Multi-Instance Retrieval. Note that TBN † feature [7] are a combination of three
modalities: RGB, Flow and Audio. Conversely, our approach only relies on RGB input. The grey rows correspond to zero-shot evaluation.

same margin � in Eq. 3 and thus are treated equally when
fine-tuning. Intuitively, if two sample (i, j) are highly sim-
ilar, they should be pulled closer with a larger margin sur-
passing the (i, k). Otherwise, they should be pulled with a
small margin if not very similar. Thus, we devise the fol-
lowing Adaptive MI-MM to extend the Eq.3.

L† =
X

(i,j,k)2⌦

max
�
cij� + vT

i tj � vT
i tk

�
+

�
cij� + tTi vj � tTi vk

�
,

(4)

where cij adaptively control the marginal, e.g., two in-
stances (i, j) that are semantically identical (cij = 1) will
be assigned a largest marin 1.0�. Otherwise, a less margin
0.1� is given when they are not very similar (cij = 0.1).

Inference. After we finalize the fine-tuning, we use the
model to encode video and text embeddings for all sam-
ples within the test set. To obtain the cross-modal retrieval
results, a common way is to calculate the similarity score
between a text embedding ti and a video embedding vj and
index the maximum as the top retrieval result. Here, moti-
vated by [3], we introduce the dual softmax techniques to
better scale the similarities and filter the hard case, thus
reaching more reliable prediction results. We show the
PyTorch-like pseudo-code in Alg. 1 to compare the two
inference way. Notably, the dual-softmax only works on
inference and thus does not introduce additional training
costs, and it is flexible to different models.

Algorithm 1 Pseudo-code for Dual-softmax (PyTorch-like)

# Input(embeddings): T_{Nxd}, V_{Mxd}
# Output(scores): res_{NxM}

# (1) the common way

sim = torch.mm(T,V)
res = F.softmax(sim, axis=0)

# (2) dual-softmax

sim = torch.mm(T,V)
prior = F.softmax(sim/500, axis=1)
res = F.softmax(prior*sim, axis=0)

3. Experiments

3.1. Implementation Details

Following the settings of official Frozen [1]1, the
video encoder is initialized with ViT [5] weights trained
on ImageNet-21K with sequence dimension D =
768. The text encoder is based on huggingface’s
distilbert-base-uncased. The dimension of com-
mon feature space is set as 256, and the temperature pa-
rameter ⌧ is set to 0.05. During pretraining, each video is
resized to 224 ⇥ 224 as input with sample frames number
4 and batch size 512. We use the Adam optimizer with a
learning rate of 3 ⇥ 10�5 with a total epoch of 10. When
transferring to MIR task, we select the checkpoints with the
best score on EgoMCQ benchmark and fine tune the VLP
model on the MIR training set with 67.2K clips. We set the
training epoch as 100 and keep other settings the same as
pretraining. In the next Sec. 3.2, we use the MI-MM loss

1https://github.com/m-bain/frozen-in-time



with � equal to 0.2 for fine-tuning. And we validate our
proposed Adaptive MI-MM and dual-softmax in Sec. 3.3.
Since most correlation cij equal 0.5 in the MIR dataset, we
double the � of Adaptive MI-MM to 0.4 to align with the
margin of vanilla MI-MM loss.

3.2. Pretraining Effects

In Tab. 1, we report both zero-shot and fine-tuning eval-
uation results of different VLP. In the zero-shot setting,
pretraining with EgoClip (3.8M), despite being smaller in
scale, still outperforms CC3M+WebVid-2M (5.5M) and
HowTo100M (136M), validating the unique benefit of pre-
training on egocentric data. When fine-tuned with 4 frames,
EgoClip pretraining maintains a margin over the best base-
line CC3M+WebVid-2M, further verifying the viewpoint
domain gap within fine-tuning. Lastly, we increase the sam-
ple frames of our finalized model as well as best competitor
CC3M+WebVid-2M pretraining to 16. As expected, perfor-
mance gains accompany the frame increase. We deem that
notable benefits come from better temporal modeling for
frequent action interactions in the 1st-person view. Over-
all, our pretraining model outperforms the best baseline
(JPoSE) by 1.0 mAP and 5.9% nDCG while requiring fewer
frames and input modalities.

(a) mAP with training epoch (b) nDCG with training epoch

Figure 2. Training curves of MIR task.

In Fig 2, we display training curves of MIR under dif-
ferent VLP discussed in Tab.3.2. We can found that: These
models with video-text pretraining have a faster rise in per-
formance. Except for HowTo100M, which is close to base-
line without pretraining. With EgoClip for egocentric pre-
training, the VLP model achieves nearly convergent perfor-
mance with only a small number of epochs (less than 20).
Especially with EgoNCE as the pretraining objective, this
positive effect is further enhanced.

3.3. Transferring Ablations

In Tab.2, we validate different fine-tuning strategies
when transfer the best pretrained model (Frozen+EgoNCE
in Tab.1) to Multi-Instance Retrieval task, and we adopt the
common way to calculate the similarity scores by default.
It shows that InfoNCE performs poorly as a fine-tuning

Methods
mAP (%) nDCG (%)

V!T T!V Avg V!T T!V Avg

InfoNCE 40.9 34.9 37.9 57.8 56.0 56.9
MI-MM 49.9 40.5 45.0 60.9 57.9 59.4
Adaptive MI-MM 52.3 40.1 46.2 62.2 58.6 60.4

w/ Dual softmax 53.8 40.9 47.4 63.2 59.6 61.4

Table 2. Ablation of different transferring strategies.

loss despite it being widely used in 3rd-person datasets
e.g., Frozen [1] fine-tune on MSR-VTT. When replacing
InfoNCE with MI-MM (Eq.3), there is a signifcant im-
provement, since MI-MM is well aligned with the mutli-
positive characteristic of the EPIC-KITCHENS-100. More-
over, Adaptive MI-MM pushes the performance beyond
MI-MM by introducing an adaptive margin (Eq.4), thus
serving as a better fine-tune objective in MIR. By equip-
ping dual-softmax to scale similarities, we reach extra 1.2%
mAP and 1.0 nDCG performance gains, which is our best
single-model performance.

4. Conclusion and Limitations

We present an egocentric video-language pretraining so-
lution [8] for the EPIC-KITCHENS-100 MIR challenge.
Specifically, we develop a video-language transformer
model and exploit the recently released Ego4D dataset [6]
to reach strong video-text representation. Furthermore, for
this challenge, we devise an Adaptive MI-MM loss to fine-
tune and adopt dual-softmax techniques to improve infer-
ence. Extensive experimental results validate the effective-
ness of our Egocentric VLP and the transferring strategies.

Limitations: VLP requires a large training cost (1, 536
GPU hrs for our model) and may be limited by the model
architecture thus not flexible for a specific task.
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Abstract

In this report, we present a solution to the EPIC-

KITCHENS-100 2022 Multi-Instance Retrieval Challenge.

The task of retrieving relevant videos with natural lan-

guage queries plays a critical role in effectively indexing

large-scale video data. The primary goal of cross-modal

video-text retrieval is to map text and video features into a

joint embedding space, where semantically similar texts and

videos are closer and vice versa. However, existing meth-

ods fail to exploit the co-occurrence information, i.e., the

intrinsic connections between videos and their correspond-

ing descriptions (text modality). In this report, we propose

a novel method named Cross-Modal Alignment Network

(CMAN) for video-text retrieval, which sufficiently utilizes

the co-occurred video- text pairs. CMAN explores the simi-

larity information of different modalities with introduced se-

mantic alignment and the bi-directional ranking loss, which

effectively aligns the similarities and bridges the modality

gap. Meanwhile, the similarities between instances of each

single modality is exploited by the intra-modal alignment.

Moreover, to further utilize the intrinsic co-occurrence in-

formation, inter-modal alignment is proposed to align fea-

tures of one modality with features of the other within each

pair. This novel method allowed us to achieve the 3rd

place in the CVPR 2022 workshop of EPIC KITCHENS-100

Multi- Instance Retrieval Challenge.

1. Multi-Instance Retrieval Challenge

In this report, we present the method that we imple-
mented for the EPIC-KITCHENS-100 2022 Multi-Instance
Retrieval Challenge. This challenge tackles the task of
caption-to-video retrieval. Specifically, given a query ac-
tion segment, the aim of video-to-text retrieval is to rank
captions in a gallery set, C, such that those with a higher
rank are more semantically relevant to the action in the
video. Conversely, text-to-video retrieval uses a query cap-
tion ci 2 C to rank videos. The challenge uses EPIC-

KITCHENS-100 dataset [4]. The EPIC-KITCHENS-100
dataset is an unscripted egocentric action dataset collected
from 45 kitchens from 4 cities across the world. Submis-
sions are evaluated on the test set for action retrieval. This
Challenge uses two evaluation metrics: mean Average Pre-
cision (mAP) and normalised Discounted Cumulative Gain
(nDCG).

2. Motivation

With the rapid development of internet and social net-
works, multimodal data, e.g. videos and texts, become more
and more popular in modern search engines. Cross-modal
video-text retrieval aims at searching semantically relevant
videos with text queries and vice versa [1, 8, 7, 9]. The
realistic and challenging scenario of video-text retrieval is
that videos usually co-occur with their descriptions in pairs,
however it’s difficult to obtain their labels or categories.

However, these methods ignore the intrinsic co-
occurrence information in the video-text pairs, which fur-
ther leads to the failure of capturing the precise relations
among data in different modalities. Specifically, the videos
and their corresponding texts often co-occur in one pair, in-
dicating that the features for the video and the text within
one pair should have the smallest distance, or equivalently
the maximum degree of similarity. Meanwhile, the similar-
ity between instances within each single modality is over-
looked in previous methods. Besides, the semantic correla-
tion of the features from one modality and the correspond-
ing ones from another modality is also ignored by existing
methods, which hinders the coherent interactions of features
from both modalities within each pair.

To tackle these three issues, in this paper we propose
a novel cross-modal video-text retrieval method, named
Cross-Modal Alignment Network (CMAN). CMAN seam-
lessly integrates the co-occurence information and the se-
mantic correlation of different modalities in a unified frame-
work, which is illustrated in Fig. 1. CMAN first extracts
the feature vectors from the original data for each modal-
ity. Then, our model utilizes the bi-directional ranking loss

1
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Figure 1. The overall framework of Cross-Modal Alignment Network (CMAN).

to guide the semantic alignment. Moreover, we utilize the
intra-modal alignment to exploit the similarities between in-
stances of each single modality. Last but not least, we intro-
duce the inter-modal alignment to make use of the seman-
tic correlation of the feature vectors from both modalities
within one pair.

3. Proposed Method

3.1. Notations and Definitions

Let {(vi, ti) | vi 2 V, ti 2 T} be a set of videos with
vi being the visual representation of the ith video sequence
and ti the corresponding textual caption. Our goal of video-
text retrieval is to learn a pair of functions ' (v) and  (t)
to map videos and texts into a joint embedding space, in
which embeddings for matched texts and videos should lie
close together, while embeddings for mismatched texts and
videos should lie far apart. Next, we elaborate details of the
proposed method, including the feature extracting, align-
ment modules and the overall loss function.

Given a video, following the widely-adopted ap-
proach [?], we utilize a CNN model pre-trained on Ima-
geNet, wherein outputs of the last pooling layer are consid-
ered as the video frame features. By a simple max pool-
ing operation, we can aggregate all frame features into one
global video feature. Similarly, given a sentence, we em-
ploy a bi-directional LSTM and also adopt a max pooling
layer to aggregate the hidden states of all time steps, and
the output is regarded as the sentence feature. Once ob-
tained these fixed features, we utilize a video encoder ' (·)
and a text encoder  (·) to map each video sample v and text
description t into a joint embedding space. The visual em-
bedding ' (v) 2 RM and text embedding  (t) 2 RM are
semantically relevant if the text describes the video, where
M denotes the dimension in the shared embedding space.

3.2. Semantic Alignment

Videos and their corresponding texts often co-occur in
one pair, indicating that the features for the video and the

text within one pair should have the smallest distance, or
equivalently the maximum degree of similarity. To tackle
this, CMAN first extracts the feature vectors from the orig-
inal data for each modality and introduces the semantic
alignment. To be specific, we utilizes the bi-directional
ranking loss to guide the semantic alignment learning.
While bridging the gap between an anchor and a positive
sample, bi-directional ranking loss can also maximize the
distance between an anchor and a negative sample. The ex-
pression of the bi-directional ranking loss for the video is as
follows:

Lv,t =
X

(i,j,k) 2 Tv,t

max (m � s (vi, tj) + s (vi, tk) , 0)

s.t. Tv,t = {(i, j, k) | vi 2 V, tj 2 Ti+, tk 2 Ti�} .
(1)

Analogously, given a text input, we set the bi-directional
ranking loss for the text as follows:

Lt,v =
X

(i,j,k) 2 Tt,v

max (m � s (ti, vj) + s (ti, vk) , 0)

s.t. Tt,v = {(i, j, k) | ti 2 T, vj 2 Vi+, vk 2 Vi�} ,
(2)

where m is a constant margin, Ti+, Ti� respectively de-
fine sets of relevant and non-relevant captions and Vi+, Vi�
the sets of relevant and non-relevant videos sequences for
multi-modal object (vi, ti), respectively. s (.) is the similar-
ity scores in the embedded space. We calculate similarity
scores with the cosine similarity, which is a widely-used
similarity metric and has been proved effective [5, 3]:

s (vi, tj) =
' (vi) ·  (tj)

k' (vi) |||| (tj) k
, (3)

where ' (vi) and  (tj) are the corresponding mapped fea-
tures, and k ·k denotes the l2 norm of vectors and the Frobe-
nius norm of matrices.
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Rank Team Submissions SLS mean Average Precision(mAP) normalised Discounted Cumulative Gain(nDCG)

Entries Date PT TL TD T2V V2T Avg. T2V V2T Avg.N
1 kevin.lin 3 05/30/22 3.0 3.0 3.0 40.95 53.84 47.39 59.60 63.29 61.44
2 afalcon 3 06/01/22 2.0 3.0 3.0 44.39 55.15 49.77 58.88 63.16 61.02
3 haoxiaoshuai 11 05/31/22 2.0 3.0 3.0 38.34 46.69 44.02 51.31 54.82 53.06

4 buraksatar 12 05/26/22 2.0 3.0 3.0 38.10 47.52 42.81 54.12 56.55 55.33
5 MI-MM 1 12/10/21 2.0 3.0 3.0 23.08 32.09 27.58 40.48 43.72 42.10

Table 1. Video-to-Text and Text-to-Video retrieval results on the EPIC-KITCHENS-100 dataset.

3.3. Intra-Modal Alignment

Existing works train the embedding network only with
the consideration of the semantic alignment between differ-
ent modalities, which makes the semantically similar texts
and videos become closer and vice versa. However, the sim-
ilarity between instances within each single modality is of-
ten overlooked in previous methods.

To that end, we further propose the intra-modal align-
ment to exploit the similarities between instances of each
single modality. The intra-modal alignment ensures that the
neighborhood structure within each modality is preserved in
the newly built joint embedding space. Specifically, in the
learned video embedding space, we enable similar videos to
be close to each other. Similarly, in the learned text embed-
ding space, texts of the same videos are expected to be close
to each other. This can also provide a useful regularization
term for the cross-view matching task. Thus, the expression
of the intra-modal alignment loss for the video modality can
be defined as:

Lv,v =
X

(i,j,k) 2 Tv,v

max (m � s (vi, vj) + s (vi, vk) , 0)

s.t. Tv,v = {(i, j, k) | vi 2 V, vj 2 Vi+, vk 2 Vi�} .
(4)

Similarly, we define the intra-modal alignment loss for
the text modality as:

Lt,t =
X

(i,j,k) 2 Tt,t

max (m � s (ti, tj) + s (ti, tk) , 0)

s.t. Tt,t = {(i, j, k) | ti 2 T, t 2 Ti+, t 2 Ti�} .
(5)

3.4. Inter-Modal Alignment

During the whole training procedure, merely utilizing
the cross-modal semantic alignment will lead to the ig-
norance of inherent characteristics within each modality.
We address that the semantic correlation of the features
from one modality and the corresponding ones from another
modality is also ignored by existing methods, which hinders
the coherent interactions of features from both modalities
within each pair.

To tackle this issue, in this paper we introduce the inter-
modal alignment to make use of the semantic correlation of
the feature vectors from both modalities within one pair. To
ensure that the pairwise structure within each pair is pre-
served in the newly built joint embedding space, formally,

the inter-modal alignment can be formulated as:

Lc = ⌃N
i=1||vi � ti||, (6)

where N is the batch size.
Combining the above loss terms together, the overall ob-

jective function can be formulated as:

L = Lv,t + Lt,v + �1Lv,v + �2Lt,t + �3Lc , (7)

where �1, �2 and �3 are hyper parameters for balancing
these terms.

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. To show the effectiveness of the proposed
method, we conduct experiments on EPIC-KITCHENS-100
dataset [4]. As access to the captions are required for both
video-to-text and text-to-video retrieval, the Val set is used
for evaluating this challenge to allow the held-out Test set
for all other challenges to remain intact. We consider all the
videos in Val, and all unique captions, removing repeats.

Evaluation Metrics. We uses two evaluation metrics:
mean Average Precision (mAP) and normalised Discounted
Cumulative Gain (nDCG) in the CVPR 2022 workshop of
EPIC KITCHENS-100 Multi-Instance Retrieval Challenge.
Mean Average Precision (mAP) has also been used for re-
trieval baselines [10, 5] as it allows for the full ranking to be
evaluated. nDCG has been used previously for information
retrieval [2, 6, 10]. It requires similarity scores between all
items in the test set.

4.2. Implementation Details

We set �1 = �2 to 0.01 and set �3 to 0.005, the margin
of the bi-directional ranking loss to 0.2, and the mini-batch
size to 128.

4.3. Result

Results are shown in Table 1. CMAN verifies the effec-
tiveness of simultaneously considering the semantic align-
ment, intra-modal alignment and the inter-modal alignment.
At the closing of the challenge, CMAN(haoxiaoshuai) is
ranked 3rd on the leaderboard. Table 1 shows the reported
results on all metrics.
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5. Conclusion

In this report, we present a solution to the EPIC-
KITCHENS-100 2022 Multi-Instance Retrieval Challenge.
In this report, we propose a novel method named Cross-
Modal Alignment Network (CMAN) for video-text re-
trieval, which sufficiently exploit the co-occurrence infor-
mation, i.e., the intrinsic connections between videos and
texts. With the introduced semantic alignment and the bi-
directional ranking loss, CMAN effectively aligns the sim-
ilarities and bridges the modality gap. Moreover, intra-
modal alignment and inter-modal alignment are proposed to
utilize the similarities between instances of single modality
and those of both modalities within one pair, respectively.
This novel method allowed us to achieve the 3rd place in
the CVPR 2022 workshop of EPIC KITCHENS-100 Multi-
Instance Retrieval Challenge.
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Abstract

In this report, we present our approach for EPIC-
KITCHENS-100 Multi-Instance Retrieval Challenge 2022.
We first parse sentences into semantic roles corresponding
to verbs and nouns; then utilize self-attentions to exploit
semantic role contextualized video features along with tex-
tual features via triplet losses in multiple embedding spaces.
Our method overpasses the strong baseline in normalized
Discounted Cumulative Gain (nDCG), which is more valu-
able for semantic similarity. Our submission is ranked 3rd
for nDCG and ranked 4th for mAP.

1. Introduction
With the rise of videos uploaded by users via social me-

dia channels, cross-modal retrieval of video data and natu-
ral language descriptions has gained popularity. The goal
of video-to-text retrieval, given a query action segment, is
to rank captions in a gallery set so that those with a higher
rank are more semantically related to the video action. Text-
to-video retrieval, on the other hand, ranks videos based on
a query caption.

While most methods [3, 8, 10] use one joint embedding
space to align video and text features, recent methods [1,14]
use multiple embedding spaces to match video features into
the noun and verb embedding spaces along with the textual
features but did not consider their interactions. Moreover,
it is relatively easy to parse the textual features into verb
and noun levels since an off-the-shelf toolkit could be used.
However, mapping a video feature into the object and action
levels is still challenging, which corresponds to noun and
verb levels in text.

Inspired by [5, 11], we implement self-attentions to ex-
ploit visual features on top of the baseline, JPoSE [14] by

leveraging the contexts from nouns and verbs of the text
query with details in the following section. While we out-
perform the strong baseline in normalized Discounted Cu-
mulative Gain (nDCG), which is more beneficial for se-
mantic similarity, we fall short in mean Average Precision
(mAP), a traditional technique for binary relevance. Our ap-
proach is ranked third for nDCG, while it is ranked fourth
for mAP. We also analyze various failure examples to save
the time of the following researchers on this task.

2. Method

We follow the baseline work [14]: we create a pair of
functions that map videos and texts into a joint embedding
space, in which embeddings for matched texts and videos
should be close together, and embeddings for mismatched
texts and videos should be far apart, given a video and a
query text. A suitable embedding space should also ensure
that related videos/texts stay close together.

With this motivation, we first parse caption into the noun
t1
i

and verb t2
i

levels, followed by linear layers. We utilize
linear layers to embed corresponding video features v1

i
, v2

i

and use a self-attention layer to exploit contextualized fea-
tures. Then, we concatenate textual and visual features to
compute the distance between these representations, v̂i and
t̂i. L1 and L2 refer to triplet losses. The more details of the
loss functions are in Eq. 1 and baseline paper [14] and the
architecture details are in Fig. 1

In Eq. 1, the first two rows refer to cross-modal losses,
and the last two rows indicate within-modal losses. ✓ func-
tion denotes two fully connected layers. � function signifies
two linear layers and one self-attention layer. m refers to
the constant margin, while d is the distance function. While
i refers to the selected video, j and k denote positive and
negative samples, respectively.



Figure 1. We first parse caption into the noun t1i and verb t2i levels, followed by linear layers. We utilize linear layers to embed correspond-
ing video features v1i , v2i and use a self-attention layer to exploit contextualized features. Then, we concatenate textual and visual features
to compute the distance between these representations, v̂i and t̂i. L1 and L2 refer to triplet losses.

L = �v,t

X

i,j,k

max(0, d(�vi , ✓tj )� d(�vi , ✓tk) +m)

+ �t,v

X

i,j,k

max(0, d(✓ti , �vj )� d(✓ti , �vk) +m)

+ �v,v

X

i,j,k

max(0, d(�vi , �vj )� d(�vi , �vk) +m)

+ �t,t

X

i,j,k

max(0, d(✓ti , ✓tj )� d(✓ti , ✓tk) +m)

(1)

Eq. 2 shows that the visual features Vi are fed into the
self-attention layer to encode into zs. Then, a feed-forward
layer FF outputs the final contextualized appearance fea-
ture. Normalization of the layer is done under the Norm
function.

zs = Norm
�
MultiHead(Vi, Vi, Vi) + Vi

�

Ev = Norm
�
FF(zs) + zs

�
(2)

For multi-headed attention layers, we follow [12], as for-
mulated in Eq. 3. All of the W matrices are learned dur-
ing the training procedure. Since it is a self-attention layer,
query Q is the same as key K and value V. After each atten-
tion layer, layer normalization and the residual connection
are implemented.

MultiHead(Q,K, V ) = Concat(Head1, ...,Headh)WO

Headi = Attention(QWQ

i
,KWK

i
, V WV

i
)

Attention(Q,K, V ) = �
⇣QKT

p
d

V
⌘

(3)

3. Experiments
3.1. Implementation Details

While �t,v equals 2.0, the other constant margins equal
1.0. The batch size is 64, and the learning rate is 0.01.

Dataset. We undertake experiments on the EPIC-
KITCHENS-100 dataset [2], which is a collection of un-
scripted egocentric action data across the world, to demon-
strate the efficiency of our strategy.

Features. We use the video features extracted by TBN
[7]. Each one is an nx25x1024 matrix holding a python dic-
tionary containing the RGB, flow, and audio features, where
n is the number of video clips. The number of training and
test set pairs is 67217 and 9668, respectively. Each feature
is followed by temporal mean pooling, making the shape
nx1x1024. We utilize the textual features given by [14]
using a Word2Vec model trained on the Wikipedia corpus.
spaCy parser [4] is used to disentangle the text caption into
different PoS tags. The model is trained with the default
values of the baseline.

Evaluation Metrics. We utilize two assessment metrics,
mAP and nDCG, on the test set to evaluate submissions for
action retrieval. Mean Average Precision (mAP) was em-
ployed for retrieval baselines because it allows the whole
ranking to be analyzed on binary relevance. nDCG has al-
ready been used to retrieve information [13]. It necessitates
the use of similarity scores throughout the entire test set.

3.2. Results
Table 1 shows the comparison between our method and

the baselines. It also compares with the methods attended
to this year’s challenge. While our method overpass all the
baselines on nDCG, it falls short on mAP. The MI-MM ap-
proach projects both modalities onto a shared action space
using linear layers via max-margin loss, which is a simpli-
fied version of [9]. The JPoSE approach [14] uses a triplet
loss to separate captions into the verb and noun spaces.
The JPoSE* refers to our implementation. DCRL [6] con-



Table 1. Multi-instance retrieval results on the EPIC-KITCHENS-100 test split. T2V and V2T stand for Text-to-Video and Video-to-Text
retrieval, respectively. While the above part of the table compares with baselines, the lower part shares the result of this year’s competition.

Comparison to Baselines
mean Average Precision (mAP) normalised Discounted Cumulative Gain (nDCG)Method Average T2V V2T Average T2V V2T

MI-MM 27.58 23.08 32.09 42.10 40.48 43.72
JPoSE* 43.95 38.18 49.71 53.40 51.60 55.21

JPoSE [14] 44.01 38.11 49.91 53.53 51.55 55.51
DCRL [6] 44.23 38.49 49.96 53.56 51.83 55.28

Our Method 42.81 38.10 47.52 55.33 54.12 56.55
Comparison to Other Users

mean Average Precision (mAP) normalised Discounted Cumulative Gain (nDCG)User Average T2V V2T Average T2V V2T
haoxiaoshuai 44.02 (3) 38.34 (3) 49.69 (3) 53.06 (4) 51.31 (4) 54.82 (4)
Our Method 42.81 (4) 38.10 (4) 47.52 (4) 55.33 (3) 54.12 (3) 56.55 (3)

afalcon 49.77 (1) 44.39 (1) 55.15 (1) 61.02 (2) 58.88 (2) 63.16 (2)
kevin.lin 47.39 (2) 40.95 (2) 53.84 (2) 61.44 (1) 59.60 (1) 63.29 (1)

siders both inter-modal and intra-modal constraints at the
same time to retain both cross-modal semantic similarity
and modality-specific consistency in the embedding space.

Failure cases. We also share failure cases which could
be helpful for other researchers. For every experiment, we
give the results approximately compared to baseline JPoSE
[14]. 1) If we implement self-attention to the textual fea-
tures as it is done to the video features, the results decrease
around 2-3%. 2) When we increase the batch size or em-
bedding size, the results decrease 1-2%. 3) We get 1-2%
lower results when applying temporal max-pooling rather
than mean pooling.

4. Conclusion

In this report, we propose an approach to exploit con-
textualized video features via self-attentions and disentan-
gling them into multiple embedding spaces. It also parses
text into corresponding embedding spaces, and then the
similarity between representations is calculated via triplet
loss. While our strategy outperforms the strong baseline
in normalized Discounted Cumulative Gain (nDCG), a se-
mantic similarity measurement, it falls short in mean Av-
erage Precision (mAP), a standard measure of binary rel-
evance. For nDCG, our proposal is ranked third, and for
mAP, it is ranked fourth. We plan to exploit each video fea-
ture separately via novel fusion methods as well as utilize
domain-specific features such as hand-object relations for
future work.
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